Hive 分桶详解

1分桶

1.1什么是分桶?和分区有什么区别?

分区:Hive在查询数据的时候,一般会扫描整个表的数据,会消耗很多不必要的时间。有些时候,我们只需要关心一部分数据,比如WHERE子句的查询条件,那这时候这种全表扫描的方式是很影响性能的。从而引入了分区的概念。分区就是对数据进行分类,这样在查询的时候,就可以只是针对分区查询,从而不必全表扫描。

一个目录对应一个分区

分桶:并非所有的数据集都可形成合理的分区,特别之前所提到过的要确定合适的划分大小的疑虑。对于每一个表或者分区,可以进一步细分成桶,桶是对数据进行更细粒度的划分。Hive默认采用对某一列的每个数据进行hash(哈希),使用hashcode对 桶的个数求余,确定该条记录放入哪个桶中。

分桶实际上和 MapReduce中的分区是一样的。分桶数和reduce数对应。

一个文件对应一个分桶

1.2如何创建一个分桶?

1.2.1 语法格式

CREATE [EXTERNAL] TABLE <table_name>

(<col_name> <data_type> [, <col_name> <data_type> ...])]

[PARTITIONED BY ...]

CLUSTERED BY (<col_name>)

[SORTED BY (<col_name> [ASC|DESC] [, <col_name> [ASC|DESC]...])]

INTO <num_buckets> BUCKETS

  • CLUSTERED BY (<col_name>):以哪一列进行分桶

  • SORTED BY (<col_name> [ASC|DESC]:对分桶内的数据进行排序

  • INTO <num_buckets> BUCKETS:分成几个桶

具体解释:

只能对一列进行分桶。表可以同时分区和分桶,当表分区时,每个分区下都会有<num_buckets> 个桶。当使用 SORTED BY … 在桶内排序时,指定排序的列和指定分桶的列无需相同。ASC 为升序选项,DESC 为降序选项,默认排序方式是升序。<num_buckets> 指定分桶个数,也就是表目录下小文件的个数。

1.2.2 创建分桶实例

(1)创建一个student表:

hive> create table student(

st_id int,

st_name string,

st_sex string,

st_age int,

st_dept string

)

clustered by(st_dept) sorted by(st_age desc) into 3 buckets

row format delimited fields terminated by ',';

//  sorted by可以省略

(2)查看表结构:

hive> desc formatted student;

Num Buckets:            3  

导入数据有两种,一种是通过文件导入,但是并不会真正的分桶 ;一种是通过从其他表插入的方式导入数据,这种方式才能真正的分桶;

(3)建一个普通的student1表

hive> create table student1(st_id int,st_name string,st_sex string,st_age int,

> st_dept string)  row format delimited fields terminated by ',';

(4)导入数据到student1表

hive> load data local inpath '/hive/student.txt' into table student1;

(5)导入数据到分桶的表

方法一:

<pre>//打开强制分桶开关:</pre>

hive (myhive)> set hive.enforce.bucketing=true;

//设置reduces数为-1:

hive (myhive)> set mapreduce.job.reduces=-1;

//通过其他表插入数据

hive (myhive)> insert into table student select id, name from stu ;

(通过这种方法,得到的分桶对应的文件,数据是无序的,也就是 sorted by 或 sort by无效)

如果没有设置 bucketing属性,我们需要自己设置和分桶个数相匹配的reducer个数。

方法二:

//关闭强制分桶开关:

hive (myhive)> set hive.enforce.bucketing=false;

//设置reduces数和分桶数一致:

hive (myhive)> set mapreduce.job.reduces=3;

//通过其他表插入数据,要添加 distribute by 以及 sort by。

hive (myhive)> insert into table student select id, name from stu distribute by st_dept;

注意:hive.enforce.bucketing为true时,reduce要设为-1;

hive.enforce.bucketing为false时,reduce要设为和分桶数一致;

如果bucketing为 true,reduce又设成大于1的输,会执行两个job。

(为什么通过 load data 的方式导入数据到 student表,并不会分桶?

load data只是把文件上传到 表所在的HDFS目录下。并没有做其他操作。)

总结:我们发现其实桶的概念就是MapReduce的分区的概念,两者完全相同。物理上每个桶就是目录里的一个文件,一个作业产生的桶(输出文件)数量和reduce任务个数相同。

而分区表的概念,则是新的概念。分区代表了数据的仓库,也就是文件夹目录。每个文件夹下面可以放不同的数据文件。通过文件夹可以查询里面存放的文件。但文件夹本身和数据的内容毫无关系。

桶则是按照数据内容的某个值进行分桶,把一个大文件散列称为一个个小文件。这些小文件可以单独排序。如果另外一个表也按照同样的规则分成了一个个小文件。

分桶的好处:

1、两个表join的时候,就不必要扫描整个表,只需要匹配相同分桶的数据即可。效率当然大大提升。

2、同样,对数据抽样的时候,也不需要扫描整个文件。只需要对每个分区按照相同规则抽取一部分数据即可。

2 分桶抽样查询

对于非常大的数据集,有时用户需要使用的是一个具有代表性的查询结果而不是全部结果。Hive可以通过对表进行抽样来满足这个需求。

查询表stu_buck中的数据。

hive (myhive)> select * from student tablesample(bucket 1 out of 3 on id);

注:tablesample是抽样语句,语法:TABLESAMPLE(BUCKET x OUT OF y) 。

y必须是table总bucket数的倍数或者因子。hive根据y的大小,决定抽样的比例。例如,table总共分了4份,当y=2时,抽取(4/2=)2个bucket的数据,当y=8时,抽取(4/8=)1/2个bucket的数据。

x表示从哪个bucket开始抽取,如果需要取多个分区,以后的分区号为当前分区号加上y。例如,table总bucket数为4,tablesample(bucket 1 out of 2),表示总共抽取(4/2=)2个bucket的数据,抽取第1(x)个和第3(x+y)个bucket的数据。

注意:x的值必须小于等于y的值,否则

FAILED: SemanticException [Error 10061]: Numerator should not be bigger than denominator in sample clause for table stu_buck

数据块抽样

Hive提供了另外一种按照百分比进行抽样的方式,这种是基于行数的,按照输入路径下的数据块百分比进行的抽样。


hive (myhive)> select * from student tablesample(0.1 percent) ;

提示:这种抽样方式不一定适用于所有的文件格式。另外,这种抽样的最小抽样单元是一个HDFS数据块。因此,如果表的数据大小小于普通的块大小128M的话,那么将会返回所有行。

喜欢的朋友可以关注下公众号:圳鹏科技

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,723评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,485评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,998评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,323评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,355评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,079评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,389评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,019评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,519评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,971评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,100评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,738评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,293评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,289评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,517评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,547评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,834评论 2 345

推荐阅读更多精彩内容