用Seurat做RNA Velocity

介绍:https://www.jianshu.com/p/63071b368be5
安装:注意:velocyto 需要 python 版本>=3.6.0

git clone https://github.com/velocyto-team/velocyto.py.git
cd velocyto.py
pip install -e .  # note the trailing dot

其他安装方式https://velocyto.org/velocyto.py/install/index.html#install

使用方法以10X为例

1.Running the CLI

Usage: velocyto run10x [OPTIONS] SAMPLEFOLDER GTFFILE

          Runs the velocity analysis for a Chromium 10X Sample

          10XSAMPLEFOLDER specifies the cellranger sample folder

          GTFFILE genome annotation file

        Options:
          -s, --metadatatable FILE        Table containing metadata of the various samples (csv fortmated rows are samples and cols are entries)
          -m, --mask FILE                 .gtf file containing intervals to mask
          -l, --logic TEXT                The logic to use for the filtering (default: Default)
          -M, --multimap                  Consider not unique mappings (not reccomended)
          -@, --samtools-threads INTEGER  The number of threads to use to sort the bam by cellID file using samtools
          --samtools-memory INTEGER       The number of MB used for every thread by samtools to sort the bam file
          -t, --dtype TEXT                The dtype of the loom file layers - if more than 6000 molecules/reads per gene per cell are expected set uint32 to avoid truncation (default run_10x: uint16)
          -d, --dump TEXT                 For debugging purposes only: it will dump a molecular mapping report to hdf5. --dump N, saves a cell every N cells. If p is prepended a more complete (but huge) pickle report is printed (default: 0)
          -v, --verbose                   Set the vebosity level: -v (only warinings) -vv (warinings and info) -vvv (warinings, info and debug)
          --help                          Show this message and exit.

需要准备的文件:
1.下载genome annotation file
Download a genome annotation (.gtf file) for example from GENCODE or Ensembl. If you use the cellranger pipeline, you should download the gtf that comes prepackaged with it here.
2.下载 expressed repeats annotation(可选)
You might want to mask expressed repetitive elements, since those count could constitute a confounding factor in the downstream analysis. To do so you would need to download an appropriate expressed repeat annotation (for example from UCSC genome browser and make sure to select GTF as output format).
我的数据是大鼠的,所以选择rn6

image.png

所以输入关键三个要素:
1.路径:outs的上级目录 (e.g.包含 outs, outs/analys and outs/filtered_gene_bc_matrices的总目录).
2.genes.gtf is the genome annotation file provided with the cellranger pipeline.
3.repeat_msk.gtf is the repeat masker file described in the Preparation section above.

例子:

#对bam进行sort
samtools sort -m 3G -t CB -O BAM -o yourpath_to_outs/outs/cellsorted_possorted_genome_bam.bam yourpath_to_outs/outs/possorted_genome_bam.bam
velocyto run10x -m yourpath/repeat_msk.gtf  yourpath_to_outs/NRVC yourpath/cellranger_rn6/genes/genes.gtf

如果出现samtools的报错:可以参考以下解决方案
https://github.com/velocyto-team/velocyto.py/issues/192#issuecomment-545349435

2.Estimating RNA velocity

This guide covers the analysis and assumes that you have produced a .loom file using the velocyto CLI (follow the guide above).

关于velocyto run10x输入的loom文件的介绍

A valid .loom file is simply an HDF5 file that contains specific groups representing the main matrix as well as row and column attributes. Because of this, .loom files can be created and read by any language that supports HDF5.
.loom files can be easily handled using the loompy package.

Get started with the analysis

At this point you are ready to start analyzing your .loom file. To get started read our analysis tutorial and have a look at the notebooks examples.

library(devtools)
install_github("velocyto-team/velocyto.R")
library(velocyto.R)
library(pagoda2)
ldat <- read.loom.matrices("velocyto/NRVC.loom")
#没有数据的话可以download 10X43_1.loom from the following URL: http://pklab.med.harvard.edu/velocyto/DG1/10X43_1.loom
#ldat <- read.loom.matrices("10X43_1.loom")
#Using spliced expression matrix as input to pagoda2.
emat <- ldat$spliced
hist(log10(colSums(emat)),col='wheat',xlab='cell size')

# filter 表达量低的样本
emat <- emat[,colSums(emat)>=1e3]
#将重复的行名去除
emat<-emat[!duplicated(rownames(emat)),]
#需要用到无重复的基因的基因表达矩阵
r <- Pagoda2$new(emat,modelType='plain',trim=10,log.scale=T)
r$adjustVariance(plot=T,do.par=T,gam.k=10)
#generate cell embedding and clustering, visualize
r$calculatePcaReduction(nPcs=100,n.odgenes=3e3,maxit=300)
r$makeKnnGraph(k=30,type='PCA',center=T,distance='cosine');
r$getKnnClusters(method=multilevel.community,type='PCA',name='multilevel')
r$getEmbedding(type='PCA',embeddingType='tSNE',perplexity=50,verbose=T)
#Plot embedding, labeling clusters and gene expression 
par(mfrow=c(1,2))
r$plotEmbedding(type='PCA',embeddingType='tSNE',show.legend=F,mark.clusters=T,min.group.size=10,shuffle.colors=F,mark.cluster.cex=1,alpha=0.3,main='cell clusters')
r$plotEmbedding(type='PCA',embeddingType='tSNE',colors=r$counts[,"Cdh5"],main='Cdh5')  
image.png
image.png

Velocity estimation

#Prepare matrices and clustering data
emat <- ldat$spliced
nmat <- ldat$unspliced
emat <- emat[,rownames(r$counts)]; 
nmat <- nmat[,rownames(r$counts)]; # restrict to cells that passed p2 filter
# take cluster labels
cluster.label <- r$clusters$PCA[[1]]
cell.colors <- pagoda2:::fac2col(cluster.label)
# take embedding
emb <- r$embeddings$PCA$tSNE
#将cell-cell相关性转化为距离
cell.dist <- as.dist(1-armaCor(t(r$reductions$PCA)))
#过滤表达量低的基因
emat <- filter.genes.by.cluster.expression(emat,cluster.label,min.max.cluster.average = 0.5)
nmat <- filter.genes.by.cluster.expression(nmat,cluster.label,min.max.cluster.average = 0.05)
length(intersect(rownames(emat),rownames(emat)))
#Estimate RNA velocity (using gene-relative model with k=20 cell kNN pooling and using top/bottom 2% quantiles for gamma fit)
fit.quantile <- 0.02
rvel.cd <- gene.relative.velocity.estimates(emat,nmat,deltaT=1,kCells=20,cell.dist=cell.dist,fit.quantile=fit.quantile)
#Visualize velocity on the t-SNE embedding, using velocity vector fields
show.velocity.on.embedding.cor(emb,rvel.cd,n=300,scale='sqrt',cell.colors=ac(cell.colors,alpha=0.5),cex=0.8,arrow.scale=5,show.grid.flow=TRUE,min.grid.cell.mass=0.5,grid.n=40,arrow.lwd=1,do.par=F,cell.border.alpha = 0.1)
image.png

Visualize a fit for a particular gene (we reuse rvel.cd to save on calcualtions here):

gene <- "Myh7"
gene.relative.velocity.estimates(emat,nmat,deltaT=1,kCells = 20,kGenes=1,fit.quantile=fit.quantile,cell.emb=emb,cell.colors=cell.colors,cell.dist=cell.dist,show.gene=gene,old.fit=rvel.cd,do.par=T)
image.png

欢迎关注~

参考:
https://velocyto.org/velocyto.py/tutorial/cli.html#running-velocyto
http://velocyto.org
https://doi.org/10.1038/s41586-018-0414-6
http://pklab.med.harvard.edu/velocyto/notebooks/R/SCG71.nb.html
http://pklab.med.harvard.edu/velocyto/notebooks/R/DG1.nb.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343