论文阅读《A Transductive Multi-Head Model for Cross-Domain Few-Shot Learning》

好久不见哈 一下子就快月底啦 (已经满心欢喜期待五一啦嘻嘻)
最近更新都是围绕域适应 20/21 较新的论文(arxiv上的)
大都数网上还没有出现解读材料,故记录仅自我理解,若有偏差可简信交流。

论文名称:
《A Transductive Multi-Head Model for Cross-Domain Few-Shot Learning》
论文地址:https://arxiv.org/abs/2006.11384v1
论文代码:https://github.com/leezhp1994/TMHFS
本篇文章只记录个人阅读论文的笔记,具体翻译、代码等不展开,详细可见上述的链接.

Background

之前的论文阅读中提过了几次小样本域适应问题的背景(提出),这边就不再详细叙述,简单摘录几句。
The main challenge of cross-domain few-shot learning lies in the cross domain divergences in both the input
data space and the output label space;
主要挑战在于输入数据空间和输出标签空间中的跨域差异;

Work

In this paper, we present a new method, Transductive Multi-Head Few-Shot learning (TMHFS), to address the cross-domain few-shot learning challenge
针对跨域问题,提出了TMHFS模型(Transductive Multi-Head Few-Shot learning),转导(直推)多头小样本学习模型。
TMHFS is based on the Meta-Confidence Transduction (MCT) and Dense Feature-Matching Networks (DFMN) method
It extends the transductive model by adding an instance-wise global classification network based on the
semantic information, after the common feature embedding network as a new prediction “head”.
多头:也就是说整个模型的基础是MCT和DFMN,在这个基础上加入了一个基于语义信息的实例全局分类网络,将其公共特征嵌入网络作为一种新的预测。(“两头变成三头”)

Model

Problem Statement
In cross-domain few-shot learning setting, we have a source domain S = {Xs, Ys} from a total Cg classes and a target domain T = {Xt, Yt} from a set of totally different classes.(跨域问题定义)
The two domains have different marginal distributions in the input feature space, and disjoint output class sets.


模型如上图所示,整个模型包含三个过程以及三个头。
三个过程:
train:根据图中箭头可以看出,训练过程三个头都使用了,即使用MCT(基于距离的实例元训练分类器)、DFMN(像素分类器)和基于全局信息的语义分类器来训练嵌入网络。
fine-tining:我们只使用语义全局分类器和目标域中的支持实例来微调模型。
test:我们使用MCT部分,即元训练的实例分类器,用微调的嵌入网络来预测查询集的标签。

三个头
MCT
可参考此文《 Transductive few-shot learning with meta-learned confidence》
https://arxiv.org/pdf/2002.12017.pdf
The MCT uses distance based prototype classifier to make pre�diction for the query instances
(使用基于距离的原型分类器对查询实例进行预测,感觉有点是基于原型网络的基础)


DFMN
used solely in the training stage(看公式和度量学习有点类似,但这应该是直推/转导学习的通用,后续看还需要看一下这方面的知识。)

值得注意的是,以上两个基础结构共享相同的特征提取网络{f_θ}
a new global instance-wise prediction head
对于这个预测头,我们考虑了所有Cg类上的全局分类问题。如图1所示,支持集和查询集都用于作为该分支的训练输入,例如:

Loss
Training stage.
The purpose of training is to pre-train an embedding model fθ (i.e., the feature extractor) in the source domain.


Fine-tuning stage:
Given a few-shot learning task in the target domain, we fine-tune the embedding model fθ on the
support set by using only the instance-wise prediction head fδ, aiming to adapt fθ to the target domain data

Experiments


总的来说整个模型是基于转导/直推学习上的集成(多头)
从实验上来看效果也还不错
Ending~


希望四月依旧好运 加油呀!五月

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容