【死磕Java并发】-----J.U.C之Condition

此篇博客所有源码均来自JDK 1.8

在没有Lock之前,我们使用synchronized来控制同步,配合Object的wait()、notify()系列方法可以实现等待/通知模式。在Java SE5后,Java提供了Lock接口,相对于Synchronized而言,Lock提供了条件Condition,对线程的等待、唤醒操作更加详细和灵活。下图是Condition与Object的监视器方法的对比(摘自《Java并发编程的艺术》):

Condition

Condition提供了一系列的方法来对阻塞和唤醒线程:

  1. await() :造成当前线程在接到信号或被中断之前一直处于等待状态。
  2. **await(long time, TimeUnit unit) **:造成当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。
  3. **awaitNanos(long nanosTimeout) **:造成当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。返回值表示剩余时间,如果在nanosTimesout之前唤醒,那么返回值 = nanosTimeout - 消耗时间,如果返回值 <= 0 ,则可以认定它已经超时了。
  4. **awaitUninterruptibly() **:造成当前线程在接到信号之前一直处于等待状态。【注意:该方法对中断不敏感】。
  5. **awaitUntil(Date deadline) **:造成当前线程在接到信号、被中断或到达指定最后期限之前一直处于等待状态。如果没有到指定时间就被通知,则返回true,否则表示到了指定时间,返回返回false。
  6. signal():唤醒一个等待线程。该线程从等待方法返回前必须获得与Condition相关的锁。
  7. signal()All:唤醒所有等待线程。能够从等待方法返回的线程必须获得与Condition相关的锁。

Condition是一种广义上的条件队列。他为线程提供了一种更为灵活的等待/通知模式,线程在调用await方法后执行挂起操作,直到线程等待的某个条件为真时才会被唤醒。Condition必须要配合锁一起使用,因为对共享状态变量的访问发生在多线程环境下。一个Condition的实例必须与一个Lock绑定,因此Condition一般都是作为Lock的内部实现。

Condtion的实现

获取一个Condition必须要通过Lock的newCondition()方法。该方法定义在接口Lock下面,返回的结果是绑定到此 Lock 实例的新 Condition 实例。Condition为一个接口,其下仅有一个实现类ConditionObject,由于Condition的操作需要获取相关的锁,而AQS则是同步锁的实现基础,所以ConditionObject则定义为AQS的内部类。定义如下:

public class ConditionObject implements Condition, java.io.Serializable {
}

等待队列

每个Condition对象都包含着一个FIFO队列,该队列是Condition对象通知/等待功能的关键。在队列中每一个节点都包含着一个线程引用,该线程就是在该Condition对象上等待的线程。我们看Condition的定义就明白了:

public class ConditionObject implements Condition, java.io.Serializable {
    private static final long serialVersionUID = 1173984872572414699L;
    
    //头节点
    private transient Node firstWaiter;
    //尾节点
    private transient Node lastWaiter;

    public ConditionObject() {
    }
    
    /** 省略方法 **/
}

从上面代码可以看出Condition拥有首节点(firstWaiter),尾节点(lastWaiter)。当前线程调用await()方法,将会以当前线程构造成一个节点(Node),并将节点加入到该队列的尾部。结构如下:

Condition

Node里面包含了当前线程的引用。Node定义与AQS的CLH同步队列的节点使用的都是同一个类(AbstractQueuedSynchronized.Node静态内部类)。

Condition的队列结构比CLH同步队列的结构简单些,新增过程较为简单只需要将原尾节点的nextWaiter指向新增节点,然后更新lastWaiter即可。

等待

调用Condition的await()方法会使当前线程进入等待状态,同时会加入到Condition等待队列同时释放锁。当从await()方法返回时,当前线程一定是获取了Condition相关连的锁。

    public final void await() throws InterruptedException {
        // 当前线程中断
        if (Thread.interrupted())
            throw new InterruptedException();
        //当前线程加入等待队列
        Node node = addConditionWaiter();
        //释放锁
        long savedState = fullyRelease(node);
        int interruptMode = 0;
        /**
         * 检测此节点的线程是否在同步队上,如果不在,则说明该线程还不具备竞争锁的资格,则继续等待
         * 直到检测到此节点在同步队列上
         */
        while (!isOnSyncQueue(node)) {
            //线程挂起
            LockSupport.park(this);
            //如果已经中断了,则退出
            if ((interruptMode = checkInterruptWhileWaiting(node)) != 0)
                break;
        }
        //竞争同步状态
        if (acquireQueued(node, savedState) && interruptMode != THROW_IE)
            interruptMode = REINTERRUPT;
        //清理下条件队列中的不是在等待条件的节点
        if (node.nextWaiter != null) // clean up if cancelled
            unlinkCancelledWaiters();
        if (interruptMode != 0)
            reportInterruptAfterWait(interruptMode);
    }

此段代码的逻辑是:首先将当前线程新建一个节点同时加入到条件队列中,然后释放当前线程持有的同步状态。然后则是不断检测该节点代表的线程释放出现在CLH同步队列中(收到signal信号之后就会在AQS队列中检测到),如果不存在则一直挂起,否则参与竞争同步状态。

加入条件队列(addConditionWaiter())源码如下:

    private Node addConditionWaiter() {
        Node t = lastWaiter;    //尾节点
        //Node的节点状态如果不为CONDITION,则表示该节点不处于等待状态,需要清除节点
        if (t != null && t.waitStatus != Node.CONDITION) {
            //清除条件队列中所有状态不为Condition的节点
            unlinkCancelledWaiters();
            t = lastWaiter;
        }
        //当前线程新建节点,状态CONDITION
        Node node = new Node(Thread.currentThread(), Node.CONDITION);
        /**
         * 将该节点加入到条件队列中最后一个位置
         */
        if (t == null)
            firstWaiter = node;
        else
            t.nextWaiter = node;
        lastWaiter = node;
        return node;
    }

该方法主要是将当前线程加入到Condition条件队列中。当然在加入到尾节点之前会清楚所有状态不为Condition的节点。

fullyRelease(Node node),负责释放该线程持有的锁。

    final long fullyRelease(Node node) {
        boolean failed = true;
        try {
            //节点状态--其实就是持有锁的数量
            long savedState = getState();
            //释放锁
            if (release(savedState)) {
                failed = false;
                return savedState;
            } else {
                throw new IllegalMonitorStateException();
            }
        } finally {
            if (failed)
                node.waitStatus = Node.CANCELLED;
        }
    }

isOnSyncQueue(Node node):如果一个节点刚开始在条件队列上,现在在同步队列上获取锁则返回true

    final boolean isOnSyncQueue(Node node) {
        //状态为Condition,获取前驱节点为null,返回false
        if (node.waitStatus == Node.CONDITION || node.prev == null)
            return false;
        //后继节点不为null,肯定在CLH同步队列中
        if (node.next != null)
            return true;

        return findNodeFromTail(node);
    }

unlinkCancelledWaiters():负责将条件队列中状态不为Condition的节点删除

        private void unlinkCancelledWaiters() {
            Node t = firstWaiter;
            Node trail = null;
            while (t != null) {
                Node next = t.nextWaiter;
                if (t.waitStatus != Node.CONDITION) {
                    t.nextWaiter = null;
                    if (trail == null)
                        firstWaiter = next;
                    else
                        trail.nextWaiter = next;
                    if (next == null)
                        lastWaiter = trail;
                }
                else
                    trail = t;
                t = next;
            }
        }

通知

调用Condition的signal()方法,将会唤醒在等待队列中等待最长时间的节点(条件队列里的首节点),在唤醒节点前,会将节点移到CLH同步队列中。

    public final void signal() {
        //检测当前线程是否为拥有锁的独
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        //头节点,唤醒条件队列中的第一个节点
        Node first = firstWaiter;
        if (first != null)
            doSignal(first);    //唤醒
    }

该方法首先会判断当前线程是否已经获得了锁,这是前置条件。然后唤醒条件队列中的头节点。

doSignal(Node first):唤醒头节点

    private void doSignal(Node first) {
        do {
            //修改头结点,完成旧头结点的移出工作
            if ( (firstWaiter = first.nextWaiter) == null)
                lastWaiter = null;
            first.nextWaiter = null;
        } while (!transferForSignal(first) &&
                (first = firstWaiter) != null);
    }

doSignal(Node first)主要是做两件事:1.修改头节点,2.调用transferForSignal(Node first) 方法将节点移动到CLH同步队列中。transferForSignal(Node first)源码如下:

     final boolean transferForSignal(Node node) {
        //将该节点从状态CONDITION改变为初始状态0,
        if (!compareAndSetWaitStatus(node, Node.CONDITION, 0))
            return false;

        //将节点加入到syn队列中去,返回的是syn队列中node节点前面的一个节点
        Node p = enq(node);
        int ws = p.waitStatus;
        //如果结点p的状态为cancel 或者修改waitStatus失败,则直接唤醒
        if (ws > 0 || !compareAndSetWaitStatus(p, ws, Node.SIGNAL))
            LockSupport.unpark(node.thread);
        return true;
    }

整个通知的流程如下:

  1. 判断当前线程是否已经获取了锁,如果没有获取则直接抛出异常,因为获取锁为通知的前置条件。
  2. 如果线程已经获取了锁,则将唤醒条件队列的首节点
  3. 唤醒首节点是先将条件队列中的头节点移出,然后调用AQS的enq(Node node)方法将其安全地移到CLH同步队列中
  4. 最后判断如果该节点的同步状态是否为Cancel,或者修改状态为Signal失败时,则直接调用LockSupport唤醒该节点的线程。

总结

一个线程获取锁后,通过调用Condition的await()方法,会将当前线程先加入到条件队列中,然后释放锁,最后通过isOnSyncQueue(Node node)方法不断自检看节点是否已经在CLH同步队列了,如果是则尝试获取锁,否则一直挂起。当线程调用signal()方法后,程序首先检查当前线程是否获取了锁,然后通过doSignal(Node first)方法唤醒CLH同步队列的首节点。被唤醒的线程,将从await()方法中的while循环中退出来,然后调用acquireQueued()方法竞争同步状态。

Condition的应用

只知道原理,如果不知道使用那就坑爹了,下面是用Condition实现的生产者消费者问题:

public class ConditionTest {
    private LinkedList<String> buffer;    //容器
    private int maxSize ;           //容器最大
    private Lock lock;
    private Condition fullCondition;
    private Condition notFullCondition;

    ConditionTest(int maxSize){
        this.maxSize = maxSize;
        buffer = new LinkedList<String>();
        lock = new ReentrantLock();
        fullCondition = lock.newCondition();
        notFullCondition = lock.newCondition();
    }

    public void set(String string) throws InterruptedException {
        lock.lock();    //获取锁
        try {
            while (maxSize == buffer.size()){
                notFullCondition.await();       //满了,添加的线程进入等待状态
            }

            buffer.add(string);
            fullCondition.signal();
        } finally {
            lock.unlock();      //记得释放锁
        }
    }

    public String get() throws InterruptedException {
        String string;
        lock.lock();
        try {
            while (buffer.size() == 0){
                fullCondition.await();
            }
            string = buffer.poll();
            notFullCondition.signal();
        } finally {
            lock.unlock();
        }
        return string;
    }
}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容