spark job, stage ,task介绍

1. spark 如何执行程序?

首先看下spark 的部署图:


节点类型有:

1. master 节点: 常驻master进程,负责管理全部worker节点。

2. worker 节点: 常驻worker进程,负责管理executor 并与master节点通信。

dirvier:官方解释为: The process running the main() function of the application and creating the SparkContext。即理解为用户自己编写的应用程序

Executor:执行器:

在每个WorkerNode上为某应用启动的一个进程,该进程负责运行任务,并且负责将数据存在内存或者磁盘上,每个任务都有各自独立的Executor。

Executor是一个执行Task的容器。它的主要职责是:

1、初始化程序要执行的上下文SparkEnv,解决应用程序需要运行时的jar包的依赖,加载类。

2、同时还有一个ExecutorBackend向cluster manager汇报当前的任务状态,这一方面有点类似hadoop的tasktracker和task。

总结:Executor是一个应用程序运行的监控和执行容器。Executor的数目可以在submit时,由 --num-executors (on yarn)指定.

Job:

包含很多task的并行计算,可以认为是Spark RDD 里面的action,每个action的计算会生成一个job。

用户提交的Job会提交给DAGScheduler,Job会被分解成Stage和Task。

Stage:

一个Job会被拆分为多组Task,每组任务被称为一个Stage就像Map Stage, Reduce Stage

Stage的划分在RDD的论文中有详细的介绍,简单的说是以shuffle和result这两种类型来划分。在Spark中有两类task,一类是shuffleMapTask,一类是resultTask,第一类task的输出是shuffle所需数据,第二类task的输出是result,stage的划分也以此为依据,shuffle之前的所有变换是一个stage,shuffle之后的操作是另一个stage。比如 rdd.parallize(1 to 10).foreach(println) 这个操作没有shuffle,直接就输出了,那么只有它的task是resultTask,stage也只有一个;如果是rdd.map(x => (x, 1)).reduceByKey(_ + _).foreach(println), 这个job因为有reduce,所以有一个shuffle过程,那么reduceByKey之前的是一个stage,执行shuffleMapTask,输出shuffle所需的数据,reduceByKey到最后是一个stage,直接就输出结果了。如果job中有多次shuffle,那么每个shuffle之前都是一个stage。

Task

即 stage 下的一个任务执行单元,一般来说,一个 rdd 有多少个 partition,就会有多少个 task,因为每一个 task 只是处理一个 partition 上的数据.

每个executor执行的task的数目, 可以由submit时,--num-executors(on yarn) 来指定。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343