Pandas之创建 Pandas DataFrame

Pandas DataFrames 是具有带标签的行和列的二维数据结构,可以存储很多类型的数据。如果你熟悉 Excel 的话,可以将 Pandas DataFrames 看做类似于电子表格。

首先,我们将使用 Pandas Series 字典手动创建一个 DataFrame。第一步是创建 Pandas Series 字典。字典创建完毕后,我们可以将该字典传递给 pd.DataFrame() 函数。

我们将创建一个字典,其中包含 Alice 和 Bob 从在线商店中购买的商品。该 Pandas Series 将使用所买商品的价格作为数据,所买商品作为索引标签。我们来看看如何编写代码:

# We import Pandas as pd into Python
import pandas as pd

# We create a dictionary of Pandas Series 
items = {'Bob' : pd.Series(data = [245, 25, 55], index = ['bike', 'pants', 'watch']),
         'Alice' : pd.Series(data = [40, 110, 500, 45], index = ['book', 'glasses', 'bike', 'pants'])}

# We print the type of items to see that it is a dictionary
print(type(items))

class 'dict'

字典已经创建完毕,我们可以通过将其传递给 pd.DataFrame() 函数,创建 DataFrame。我们将创建一个可以表示多位用户的购物车的 DataFrame,在此例中只有两位用户,即 Alice 和 Bob。

# We create a Pandas DataFrame by passing it a dictionary of Pandas Series
shopping_carts = pd.DataFrame(items)

# We display the DataFrame
shopping_carts
Alice Bob
bike 500.0 245.0
book 40.0 NaN
glasses 110.0 NaN
pants 45.0 25.0
watch NaN 55.0

有几个事项需要注意。我们发现 DataFrame 以表格形式显示,和 Excel 电子表格很像,行和列的标签以粗体形式显示。此外注意,DataFrame 的行标签根据构建字典所用的两个 Pandas Series 的索引标签创建而成。DataFrame 的列标签来自字典的键。另一个注意事项是,列按照字母顺序排序,而不是字典中的顺序。稍后我们将发现,当我们从数据文件中向 DataFrame 加载数据时,不会发生这种情况。最后要注意的是,我们发现该 DataFrame 中出现了一些 NaN 值。NaN 是指非数字,Pandas 通过这种方式表示该行和列索引没有值。例如,如果我们查看 Alice 列,我们发现手表索引的值是 NaN。你可以通过查看一开始创建的字典,了解为何是这种情况。可以清晰地看出,Alice 手表标签没有条目。因此,在创建 DataFrame 时,如果特定行索引的特定列没有值,Pandas 将用 NaN 值填充。如果要将此数据馈送到机器学习算法中,我们首先需要删掉这些 NaN 值。

在上述示例中,我们使用具有定义清晰的索引的 Pandas Series 字典创建了 Pandas DataFrame。如果我们不向 Pandas Series 提供索引标签,Pandas 在创建 DataFrame 时将使用数字行索引。我们来看一个示例:

# We create a dictionary of Pandas Series without indexes
data = {'Bob' : pd.Series([245, 25, 55]),
        'Alice' : pd.Series([40, 110, 500, 45])}

# We create a DataFrame
df = pd.DataFrame(data)

# We display the DataFrame
df
Alice Bob
0 40 245.0
1 110 25.0
2 500 55.0
3 45 NaN

可以看出,Pandas DataFrame 的行索引从 0 开始,就像 NumPy ndarray 的索引一样。

现在,和 Pandas Series 一样,我们也可以使用属性从 DataFrame 中提取信息。我们输出 shopping_carts DataFrame 中的一些信息

# We print some information about shopping_carts
print('shopping_carts has shape:', shopping_carts.shape)
print('shopping_carts has dimension:', shopping_carts.ndim)
print('shopping_carts has a total of:', shopping_carts.size, 'elements')
print()
print('The data in shopping_carts is:\n', shopping_carts.values)
print()
print('The row index in shopping_carts is:', shopping_carts.index)
print()
print('The column index in shopping_carts is:', shopping_carts.columns)

shopping_carts has shape: (5, 2)
shopping_carts has dimension: 2
shopping_carts has a total of: 10 elements

The data in shopping_carts is:
[[ 500. 245.]
[ 40. nan]
[ 110. nan]
[ 45. 25.]
[ nan 55.]]

The row index in shopping_carts is: Index(['bike', 'book', 'glasses', 'pants', 'watch'], dtype='object')

The column index in shopping_carts is: Index(['Alice', 'Bob'], dtype='object')

shopping_carts DataFrame 时,我们将整个字典传递给了 pd.DataFrame() 函数。但是,有时候你可能只对一部分数据感兴趣。在 Pandas 中,我们可以通过关键字 columnsindex 选择要将哪些数据放入 DataFrame 中。我们来看一些示例:

# We Create a DataFrame that only has Bob's data
bob_shopping_cart = pd.DataFrame(items, columns=['Bob'])

# We display bob_shopping_cart
bob_shopping_cart
Bob
bike 245
pants 25
watch 55
# We Create a DataFrame that only has selected items for both Alice and Bob
sel_shopping_cart = pd.DataFrame(items, index = ['pants', 'book'])

# We display sel_shopping_cart
sel_shopping_cart
Alice Bob
pants 45 25.0
book 40 NaN
# We Create a DataFrame that only has selected items for Alice
alice_sel_shopping_cart = pd.DataFrame(items, index = ['glasses', 'bike'], columns = ['Alice'])

# We display alice_sel_shopping_cart
alice_sel_shopping_cart
Alice
glasses 110
bike 500

你还可以使用列表(数组)字典手动地创建 DataFrame。流程和之前一样,首先创建一个字典,然后将该字典传递给 pd.DataFrame() 函数。但是在这种情况下,字典中的所有列表(数组)长度必须一样。我们来看一个示例:

# We create a dictionary of lists (arrays)
data = {'Integers' : [1,2,3],
        'Floats' : [4.5, 8.2, 9.6]}

# We create a DataFrame 
df = pd.DataFrame(data)

# We display the DataFrame
df
Floats Integers
0 4.5 1
1 8.2 2
2 9.6 3

注意,因为我们创建的 data 字典没有标签索引,因此 Pandas 在创建 DataFrame 时自动使用数字行索引。但是,我们可以通过在 pd.DataFrame() 函数中使用关键字 index,为行索引添加标签。我们来看一个示例:

# We create a dictionary of lists (arrays)
data = {'Integers' : [1,2,3],
        'Floats' : [4.5, 8.2, 9.6]}

# We create a DataFrame and provide the row index
df = pd.DataFrame(data, index = ['label 1', 'label 2', 'label 3'])

# We display the DataFrame
df
Floats Integers
label 1 4.5 1
label 2 8.2 2
label 3 9.6 3

手动创建 Pandas DataFrame 的最后一种方式是使用 Python 字典列表。流程和之前一样,我们先创建字典,然后将该字典传递给 pd.DataFrame() 函数。

# We create a list of Python dictionaries
items2 = [{'bikes': 20, 'pants': 30, 'watches': 35}, 
          {'watches': 10, 'glasses': 50, 'bikes': 15, 'pants':5}]

# We create a DataFrame 
store_items = pd.DataFrame(items2)

# We display the DataFrame
store_items
bikes glasses pants watches
0 20 NaN 30 35
1 15 50.0 5 10

同样注意,因为我们创建的 items2 字典没有标签索引,因此 Pandas 在创建 DataFrame 时自动使用数字行索引。和之前一样,我们可以通过在 pd.DataFrame() 函数中使用关键字 index,为行索引添加标签。假设我们将使用该 DataFrame 存储某个商店的商品库存数量。我们将行索引的标签设为 store 1store 2

# We create a list of Python dictionaries
items2 = [{'bikes': 20, 'pants': 30, 'watches': 35}, 
          {'watches': 10, 'glasses': 50, 'bikes': 15, 'pants':5}]

# We create a DataFrame  and provide the row index
store_items = pd.DataFrame(items2, index = ['store 1', 'store 2'])

# We display the DataFrame
store_items
bikes glasses pants watches
store 1 20 NaN 30 35
store 2 15 50.0 5 10
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,482评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,377评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,762评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,273评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,289评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,046评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,351评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,988评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,476评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,948评论 2 324
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,064评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,712评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,261评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,264评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,486评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,511评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,802评论 2 345

推荐阅读更多精彩内容