Description
Given a non-empty array containing only positive integers, find if the array can be partitioned into two subsets such that the sum of elements in both subsets is equal.
Note:
- Each of the array element will not exceed 100.
- The array size will not exceed 200.
Example 1:
Input: [1, 5, 11, 5]
Output: true
Explanation: The array can be partitioned as [1, 5, 5] and [11].
Example 2:
Input: [1, 2, 3, 5]
Output: false
Explanation: The array cannot be partitioned into equal sum subsets.
Solution
就是01背包问题。
DP, time O(l * n), space O(l * n)
class Solution {
public boolean canPartition(int[] nums) {
int sum = getSum(nums);
if (sum % 2 > 0) {
return false;
}
int n = nums.length;
boolean[][] dp = new boolean[n + 1][sum + 1];
dp[0][0] = true;
for (int i = 1; i <= n; ++i) {
for (int j = 0; j <= sum; ++j) {
dp[i][j] = dp[i - 1][j];
if (j >= nums[i - 1]) {
dp[i][j] |= dp[i - 1][j - nums[i - 1]];
}
}
}
return dp[n][sum / 2];
}
public int getSum(int[] nums) {
int sum = 0;
for (int n : nums) {
sum += n;
}
return sum;
}
}
DP, time O(n), space O(n)
dp数组可以降成一维,从后往前遍历即可。
class Solution {
public boolean canPartition(int[] nums) {
int sum = getSum(nums);
return sum % 2 == 0 && subsetSum(nums, sum, sum / 2) ? true : false;
}
public int getSum(int[] nums) {
int sum = 0;
for (int n : nums) {
sum += n;
}
return sum;
}
public boolean subsetSum(int[] nums, int sum, int target) {
boolean[] dp = new boolean[sum + 1];
dp[0] = true;
for (int n : nums) {
for (int i = sum; i >= n; --i) {
dp[i] |= dp[i - n];
}
}
return dp[target];
}
}