OpenCV 车牌检测资料

SVM

简单来说,SVM就是用于区分不同的类型(车牌、非车牌)。SVM的训练数据既有特征又有标签,通过训练,让机器可以自己找到特征和标签之间的联系,在面对只有特征没有标签的数据时,可以判断出标签。属于机器学习中的监督学习。

核函数: 用于将不同类型进行 提维(需要一点空间想象力)

svm线性可分:

svm线性可分.png

svm线性不可分:

svm线性不可分.png

SVM训练流程:

svm训练流程.png
预处理 (原始数据->学习数据(无标签)

预处理步骤主要处理的是原始数据到学习数据的转换过程。(真正的车牌图片和不是车牌的图片)

打标签 (学习数据(无标签)->学习数据(带标签))

将未贴标签的数据转化为贴过标签的学习数据。

分组(学习数据(带标签)->分组数据)

将数据分为训练集和测试集

训练(训练数据->模型)

加载待训练的车牌数据和非车牌数据,合并数据,配置SVM模型的训练参数进行训练。

HOG特征(Histogram of Oriented Gradient)

局部归一化的梯度方向直方图,是一种对图像局部重叠区域的密集型描述符, 它通过计算局部区域的梯度方向直方图来构成特征。

参数1(检测窗口)的宽- 参数2(块大小)的宽 结果与参数3(块滑动增量)的余数要为0 高也一样

参数4是胞元大小,参数5是梯度方向

HOGDescriptor hog(Size(128, 64), Size(16, 16), Size(8, 8), Size(8, 8), 3);


窗口.jpg

块和步.jpg

检测窗口被分为:((128-16)/8+1)*((64-16)/8+1)=105个块(Block);

一个Block有4个胞元(Cell);

一个Cell的Hog描述子向量的长度是9;

统计梯度直方图特征,就是将梯度方向(0-360)划分为x个区间,将图像化为16x16的若干个窗口,每个窗口又划分为x个block,每个block再化为4个cell(8x8)。对每一个cell,算出每一像素点的梯度方向,按梯度方向增加对应bin的值,最终综合N个cell的梯度直方图组成特征。

简单来说,车牌的边缘与内部文字组成的一组信息(在边缘和角点的梯度值是很大的,边缘和角点包含了很多物体的形状信息),HOG就是抽取这些信息组成一个直方图。

HOG : 梯度方向弱化光照的影响,适合捕获轮廓。

LBP : 中心像素的LBP值反映了该像素周围区域的纹理信息。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容