微生物

微生物 [wēi shēng wù]

微生物


百度百科

个体难以用肉眼观察的一切微小生物

本词条是多义词,共2个义项

展开

微生物包括:细菌、病毒、真菌以及一些小型的原生生物、显微藻类等在内的一大类生物群体,它个体微小,与人类关系密切。涵盖了有益跟有害的众多种类,广泛涉及食品、医药、工农业、环保、体育等诸多领域。在中国大陆地区及台湾的教科书中,均将微生物划分为以下8大类:细菌、病毒、真菌、放线菌、立克次氏体、支原体、衣原体、螺旋体。有些微生物是肉眼可以看见的,像属于真菌的蘑菇、灵芝、香菇等。还有微生物是一类由核酸和蛋白质等少数几种成分组成的“非细胞生物”,但是它的生存必须依赖于活细胞。

中文名

微生物

外文名

Micro-Organism

种类

细菌、真菌、原生生物及病毒[1]

特点

种类多、个体小[2]

分类

生物物种

与人类的关系

密切,分有害和有益两类

涉及领域

食品、医药、工农业、环保等

发现者

列文虎克

热点关注

解读 我们体内的微生物会是左右健康的关键吗?

什么是微生物群? 无论是体内还是体外,都有着大量的微生物栖息在我们的身体上。虽然 细菌 是其中最主要的群体,但我们同时也拥有被称为 古生菌 的单细胞生物,以及 真菌 、 病毒 和其他微生物。它们被统称为 人类微...

2018-07-13

现代定义

个体难以用肉眼观察的一切微小生物之统称。[3]微生物包括细菌、病毒、真菌和少数藻类等。(但有些微生物是肉眼可以看见的,像属于真菌的蘑菇、灵芝等。)病毒是一类由核酸和蛋白质等少数几种成分组成的“非细胞生物”,但是它的生存必须依赖于活细胞。根据存在的不同环境分为空间微生物、海洋微生物等,按照细胞结构分类分为原核微生物和真核微生物。[2]

主要特征

体小面大

一个体积恒定的物体,被切割的越小,其相对表面积越大。微生物体积很小,如一个典型的球菌,其体积约1mm3,可是其表面积却很大。这个特征也是赋予微生物其他如代谢快等特性的基础。

吸多转快

微生物通常具有极其高效的生物化学转化能力。据研究,乳糖菌在1个小时之内能够分解其自身重量1000-10000倍的乳糖,产朊假丝酵母菌的蛋白合成能力是大豆蛋白合成能力的100倍。

生长繁殖快

相比于大型动物,微生物具有极高的生长繁殖速度。大肠杆菌能够在12.5-20分钟内繁殖1次。不妨计算一下,1个大肠杆菌假设20分钟分裂1次,1小时3次,1昼夜24小时分裂24×3=72次,大概可产生4722366500万亿个(2的72次方),这是非常巨大的数字。但事实上,由于各种条件的限制,如营养缺失、竞争加剧、生存环境恶化等原因,微生物无法完全达到这种指数级增长。 已知大多数微生物生长的最佳pH范围为7.0 (6.6~7.5)附近,部分则低于4.0。

微生物的这一特性使其在工业上有广泛的应用,如发酵、单细胞蛋白等。微生物是人类不可或缺的好朋友。

适应强 易变异

分布广 种类多

发现历史

形态学时期

微生物的形态观察是从安东尼·列文虎克发明显微镜开始的,他利用能放大50~300倍的显微镜,清楚地看见了细菌和原生动物,他的发现和描述首次揭示了一个崭新的生物世界——微生物世界。在微生物学的发展史上具有划时代的意义。[1]

生理学时期

继列文虎克发现微生物世界以后的200年间,微生物学的研究基本上停留在形态描述和分门别类阶段。直到19世纪中期,以法国的巴斯德和德国的柯赫为代表的科学家才将微生物的研究从形态描述推进到生理学研究阶段,揭露了微生物是造成腐败发酵和人畜疾病的原因,并建立了分离、培养、接种和灭菌等一系列独特的微生物技术。从而奠定了微生物学的基础,同时开辟了医学和工业微生物等分支学科。巴斯德和柯赫是微生物学的奠基人。[2]

巴斯德和柯赫的杰出工作,使微生物学作为一门独立的学科开始形成,并出现以他们为代表而建立的各分支学科,例如细菌学(巴斯德、柯赫等)、消毒外科技术(J. Lister),免疫学(巴斯德、Metchnikoff、Behring、Ehrlich等)、土壤微生物学(Beijernck Winogradsky 等)、病毒学(Ivanowsky、Beijerinck等)、植物病理学和真菌学(Bary、Berkeley等)、酿造学(Hensen、Jorgensen 等)以及化学治疗法(Ehrlish 等)。微生物学的研究内容日趋丰富,使微生物学发展更加迅速。[2]

现代微生物学

19世纪末和20世纪初,微生物学被牢固地建立起来。它的主要发展有两个方面:一是研究传染病和免疫学,研究疾病的防治和化学治疗剂的功效;另一方面是和遗传学的结合。[2]

历史上,微生物学的发展曾经历了两个辉煌的黄金时代,也经历了其发展的低谷时期。近20年来,随着基因组学、结构生物学、生物信息学、PCR技术、高分率荧光显微镜及其它物理化学理论和技术等的应用,使微生物学的研究取得了一系列突破性进展,微生物学己走出其低谷,开始进入它的第三个黄金时代。本文就下列几个方面谈谈自已对当今微生学发展的机遇、挑战和趋势的一些认识。[4]

原核生物

原核微生物(prokaryotic microbe):指核质和细胞质之间不存在明显核膜,其遗传物质由单一核酸组成的一类微生物。

原核微生物的核很原始,发育不全,只是DNA链高度折叠形成的一个核区,没有核膜,核质裸露,与细胞质没有明显界线,叫拟核或似核。原核微生物存在单一细胞器核糖体,只有由细胞质膜内陷形成的不规则的泡沫结构体系,如间体和光合作用层片及其他内折。也不进行有丝分裂。原核微生物形状细短,结构简单,多以二分裂方式进行繁殖的原核生物,是在自然界分布最广、个体数量最多的有机体,是大自然物质循环的主要参与者。[2]

  共17张

微生物

原核微生物包括古菌(即古细菌)、真细菌、放线菌、蓝细菌、粘细菌、立克次氏体、支原体、衣原体和螺旋体。

微生物群

种类

原核;

真核:真菌、藻类(部分)、原生动物(部分)。

球菌

非细胞类:病毒和亚病毒。

一般地,在中国大陆地区的教科书中,均将微生物划分为以下7大类:

细菌、病毒、真菌、立克次氏体、支原体、衣原体、螺旋体。

细菌

(1)定义:一类细胞细短,结构简单,胞壁坚韧,多以二分裂方式繁殖和水生性强的原核生物。[5]

(2)分布:温暖,潮湿和富含有机质的地方。

  共8张

细菌

(3)结构:主要是单细胞的原核生物,有球形,杆形,螺旋形。[5]

基本结构:细胞膜细胞壁细胞质核质。

特殊结构:荚膜、鞭毛、菌毛、芽胞。

(4)繁殖: 主要以二分裂方式进行繁殖的。

(5)菌落: 单个细菌用肉眼是看不见的,当单个或少数细菌在固体培养基上大量繁殖时,便会形成一个肉眼可见的,具有一定形态结构的子细胞群落。[5]

菌落是菌种鉴定重要的依据。不同种类的细菌菌落的大小,形状光泽度颜色硬度透明度都不同。[6]

放线菌

(1)定义:一类主要成菌丝状生长和以孢子繁殖的陆生性较强的原核生物(2)分布:含水量较低,有机物较丰富的,呈微碱性的土壤中。

(3)形态构造:主要由菌丝组成,包括基内菌丝和气生菌丝(部分气生菌丝可以成熟分化为孢子丝,产生孢子) 。

(4)繁殖:通过形成无性孢子的形式进行无性繁殖。

无性繁殖有性繁殖。

(5)菌落:在固体培养基上:干燥,不透明,表面呈致密的丝绒状,彩色干粉。[7]

病毒

(1) 定义:一类由核酸和蛋白质等少数几种成分组成的“非细胞生物”,但是它的生存必须依赖于活细胞。[8]

(2)结构:蛋白质衣壳以及核酸(核酸为DNA或RNA)。[8]

(3)大小:一般直径在100nm左右,最大的病毒直径为200nm的牛痘病毒,最小的病毒直径为28nm的脊髓灰质炎病毒。[8]

(4)增殖:病毒的生命活动中一个显著的特点为寄生性。病毒只能寄生在某种特定的活细胞内才能生活。并利用宿主细胞内的环境及原料快速复制增值。在非寄生状态时呈结晶状,不能进行独立的代谢活动。以噬菌体为例: 吸附→DNA注入→复制、合成→组装→释放。(吸附-穿入-脱壳-生物合成-装配与释放)[8]。

噬菌体侵染细菌过程示意图

化学组成

C,H,O,N,P,S以及其他元素。

营养物质

1,水和无机盐

2,碳源:凡能为微生物提供生长繁殖所需碳元素的营养物质。

来源:周围环境中的有机物质,常用的有糖类、油脂、有机酸及有机酸酯和小分子醇。

作用:碳源对微生物生长代谢的作用主要为提供细胞的碳架,提供细胞生命活动所需的能量,提供合成产物的碳架。

3,氮源:凡能为微生物提供所必需氮元素的营养物质。

来源:周围环境中得有机无机含氮物质。

作用:主要用于合成蛋白质,核酸以及含氮的代谢产物。

4,能源:能为微生物生命活动提供最初能源来源的营养物质或辐射能。

5,生长因子:微生物生长不可缺少的微量有机物。

病源微生物

引起人和动物致病的微生物叫病源微生物,有八大类:

1,真菌:引起皮肤病。深部组织上感染。

2,放线菌:皮肤,伤口感染。

3,螺旋体:皮肤病,血液感染 如梅毒,钩端螺旋体病。

4,细菌:皮肤病化脓,上呼吸道感染,泌尿道感染,食物中毒,败血压症,急性传染病等。

5,立克次体:斑疹伤寒等。

6,衣原体:沙眼,泌尿生殖道感染。

7,病毒:肝炎,乙型脑炎,麻疹,艾滋病等。

8,支原体:肺炎,尿路感染。

生物界的微生物达几万种,大多数对人类有益,只有一少部分能致病。有些微生物通常不致病,在特定环境下能引起感染称条件致病菌。 能引起食品变质,腐败,正因为它们分解自然界的物体,才能完成大自然的物质循环。

作用

生活生产

微生物对人类最重要的影响之一是导致传染病的流行。在人类疾病中有50%是由病毒引起。微生物导致人类疾病的历史,也就是人类与之不断斗争的历史。在疾病的预防和治疗方面,人类取得了长足的进展,但是新现和再现的微生物感染还是不断发生,像大量的病毒性疾病一直缺乏有效的治疗药物。一些疾病的致病机制并不清楚。大量的广谱抗生素的滥用造成了强大的选择压力,使许多菌株发生变异,导致耐药性的产生,人类健康受到新的威胁。一些分节段的病毒之间可以通过重组或重配发生变异,最典型的例子就是流行性感冒病毒。每次流感大流行流感病毒都与前次导致感染的株型发生了变异,这种快速的变异给疫苗的设计和治疗造成了很大的障碍。而耐药性结核杆菌的出现使原本已近控制住的结核感染又在世界范围内猖獗起来。[9]

微生物千姿百态,有些是腐败性的,即引起食品气味和组织结构发生不良变化。当然有些微生物是有益的,它们可用来生产如奶酪,面包,泡菜,啤酒和葡萄酒。微生物非常小,必须通过显微镜放大约1000 倍才能看到。比如中等大小的细菌,1000个叠加在一起只有句号那么大。

微生物能够致病,能够造成食品、布匹、皮革等发霉腐烂,但微生物也有有益的一面。最早是弗莱明从青霉菌抑制其它细菌的生长中发现了青霉素,这对医药界来讲是一个划时代的发现。后来大量的抗生素从放线菌等的代谢产物中筛选出来。抗生素的使用在第二次世界大战中挽救了无数人的生命。一些微生物被广泛应用于工业发酵,生产乙醇、食品及各种酶制剂等;一部分微生物能够降解塑料、处理废水废气等等,并且可再生资源的潜力极大,称为环保微生物;还有一些能在极端环境中生存的微生物,例如:高温、低温、高盐、高碱以及高辐射等普通生命体不能生存的环境,依然存在着一部分微生物等等。看上去,我们发现的微生物已经很多,但实际上由于培养方式等技术手段的限制,人类现今发现的微生物还只占自然界中存在的微生物的很少一部分。[9]

微生物间的相互作用机制也相当奥秘。例如健康人肠道中即有大量细菌存在,称为正常菌群,其中包含的细菌种类高达上百种。在肠道环境中这些细菌相互依存,互惠共生。食物、有毒物质甚至药物的分解与吸收,菌群在这些过程中发挥的作用,以及细菌之间的相互作用机制还不明了。一旦菌群失调,就会引起腹泻。[9]

随着医学研究进入分子水平,人们对基因、遗传物质等专业术语也日渐熟悉。人们认识到,是遗传信息决定了生物体具有的生命特征,包括外部形态以及从事的生命活动等等,而生物体的基因组正是这些遗传信息的携带者。因此阐明生物体基因组携带的遗传信息,将大大有助于揭示生命的起源和奥秘。[10]

工业微生物涉及食品、制药、冶金、采矿、石油、皮革、轻化工等多种行业。通过微生物发酵途径生产抗生素、丁醇、维生素C以及一些风味食品的制备等;某些特殊微生物酶参与皮革脱毛、冶金、采油采矿等生产过程,甚至直接作为洗衣粉等的添加剂;另外还有一些微生物的代谢产物可以作为天然的微生物杀虫剂广泛应用于农业生产。通过对枯草芽孢杆菌的基因组研究,发现了一系列与抗生素及重要工业用酶的产生相关的基因。乳酸杆菌作为一种重要的微生态调节剂参与食品发酵过程,对其进行的基因组学研究将有利于找到关键的功能基因,然后对菌株加以改造,使其更适于工业化的生产过程。国内维生素C两步发酵法生产过程中的关键菌株氧化葡萄糖酸杆菌的基因组研究,将在基因组测序完成的前提下找到与维生素C生产相关的重要代谢功能基因,经基因工程改造,实现新的工程菌株的构建,简化生产步骤,降低生产成本,继而实现经济效益的大幅度提升。对工业微生物开展的基因组研究,不断发现新的特殊酶基因及重要代谢过程和代谢产物生成相关的功能基因,并将其应用于生产以及传统工业、工艺的改造,同时推动现代生物技术的迅速发展。[10]

经济作物柑橘的致病菌是国际上第一个发表了全序列的植物致病微生物。还有一些在分类学、生理学和经济价值上非常重要的农业微生物,例如:胡萝卜欧文氏菌、植物致病性假单胞菌以及中国正在开展的黄单胞菌的研究等正在进行之中。日前植物固氮根瘤菌的全序列也刚刚测定完成。借鉴已经较为成熟的从人类病原微生物的基因组学信息筛选治疗性药物的方案,可以尝试性地应用到植物病原体上。特别像柑橘的致病菌这种需要昆虫媒介才能完成生活周期的种类,除了杀虫剂能阻断其生活周期以外,只能通过遗传学研究找到毒力相关因子,寻找抗性靶位以发展更有效的控制对策。固氮菌全部遗传信息的解析对于开发利用其固氮关键基因提高农作物的产量和质量也具有重要的意义。[10]

在极端环境下能够生长的微生物称为极端微生物,又称嗜极菌。嗜极菌对极端环境具有很强的适应性,极端微生物基因组的研究有助于从分子水平研究极限条件下微生物的适应性,加深对生命本质的认识。[9]

生物理论

现代生物学的若干基础性的重大发现与理论,是在研究微生物的过程中或以微生物为实验材料与工具取得的。这些理论包括:证明DNA(脱氧核糖核酸)是遗传信息的载体(三大经典实验:肺炎球菌的转化实验、噬菌体实验、植物病毒的重组实验)。DNA的半保留复制方式(双螺旋的每一条子链分别、都是复制模板)。遗传密码子的解读(64个密码子各对应20种氨基酸及终止信号的哪一种)。基因的转录调节(operon, promoter, operator, repressor, activator的概念与调节方式)。信使RNA的翻译调节(terminator)等等……。2013年,很多常用、通用的生物学研究技术依赖于微生物,比如:分子克隆重组蛋白在细菌或酵母中的表达。很多医学技术也依赖于微生物,比如:以病毒为载体的基因治疗。[1]

微生物生长:在适宜条件下,不断吸收营养物质,并按自身的代谢方式进行新陈代谢,如同化作用大于异化作用,其结果是原生质的总量不断的增加,称为微生物的生长。

微生物的繁殖:当细胞增长到一定程度时,就以二分裂的方式形成两个相似的子细胞,子细胞重复上述过程是细胞数目增加,称为微生物的繁殖。[1]

世界之最

目前世界上已知最大的微生物:1985年Fishelson、Montgomery及Myrberg三人发现一种生长于红海水域中的热带鱼(名叫surgeonfish)的小肠管道中的微生物费氏刺骨鱼菌(Epulopiscium fishelsoni),这是当时世界上所发现最大的微生物。它外形酷似雪茄烟,长约200~500μm,最长可达600μm,体积约为大肠杆菌的100万倍,这种微生物并不需要由显微镜观察便可直接由肉眼察觉到它的存在。目前最大的微生物则是1997年,由Heidi Schulz在纳米比亚海岸海洋沉淀土中所发现的呈球状的细菌,直径约100~750μm。这比之前所提的微生物大上2~4倍。2011年9月我国科学家在海南发现世界最大真菌子实体,该子实体已生长了20年,长度超过10米,宽度接近1米,厚度在5厘米左右,体积为409262–525140立方厘米,重量超过500千克。

目前世界上已知最小的能独立生活的微生物:支原体,过去也译成“霉形体”,它是一类介于细菌和病毒之间的单细胞微生物,是地球上已知的能独立生活的最小微生物,大小约为100纳米。支原体一般都是寄生生物,其中最有名的当属肺炎支原体(M.Pneumonia),它能引起哺乳动物特别是牛的呼吸器官发生严重病变。[5]

病毒:最小的植物病毒,莴苣花叶病毒,粗1.5纳米,长28纳米;最小的动物病毒,口蹄疫病毒,直径只有2.1纳米。

亚病毒:(包括类病毒、拟病毒、朊病毒)是世界上最小的微生物。拟病毒的大小和类病毒相似;朊病毒比已知的最小的常规病毒还小得多(约30~50nm);类病毒是目前已知最小的可传染的致病因子,比普通病毒简单,1971年首次报道的马铃薯纺锤形块茎病类病毒,它的大小只有莴苣花叶病毒的三十九分之一。

基因因素

农业微生物基因组研究认清致病机制发展控制病害的新对策。据资料统计,全球每年因病害导致的农作物减产可高达20%,其中植物的细菌性病害最为严重。除了培植在遗传上对病害有抗性的品种以及加强园艺管理外,似乎没有更好的病害防治策略。因此积极开展某些植物致病微生物的基因组研究,认清其致病机制并由此发展控制病害的新对策显得十分紧迫。例如:胡萝卜欧文氏菌、植物致病性假单胞菌以及我国正在开展的黄单胞菌的研究等正在进行之中。[11]

微生物能够分解纤维素等物质,并促进资源的再生利用。对这些微生物开展的基因组研究,在深入了解特殊代谢过程的遗传背景的前提下,有选择性的加以利用,例如找到不同污染物降解的关键基因,将其在某一菌株中组合,构建高效能的基因工程菌株,一菌多用,可同时降解不同的环境污染物质,极大发挥其改善环境、排除污染的潜力。美国基因组研究所结合生物芯片方法对微生物进行了特殊条件下的表达谱的研究,以期找到其降解有机物的关键基因,为开发及利用确定目标。极端环境微生物基因组研究深入认识生命本质应用潜力极大。有一种嗜极菌,它能够暴露于数千倍强度的辐射下仍能存活,而人类一个剂量强度就会死亡。该细菌的染色体在接受几百万拉德a射线后粉碎为数百个片段,但能在一天内将其恢复。研究其DNA修复机制对于发展在辐射污染区进行环境的生物治理非常有意义。开发利用嗜极菌的极限特性可以突破当前生物技术领域中的一些局限,建立新的技术手段,使环境、能源、农业、健康、轻化工等领域的生物技术能力发生革命。来自极端微生物的极端酶,可在极端环境下行使功能,将极大地拓展酶的应用空间,是建立高效率、低成本生物技术加工过程的基础,例如PCR技术中的TagDNA聚合酶、洗涤剂中的碱性酶等都具有代表意义。极端微生物的研究与应用将是取得现代生物技术优势的重要途径,其在新酶、新药开发及环境整治方面应用潜力极大。[11]

研究发展

综述

17世纪中叶荷兰人列文虎克(Antoni van Leeuwenhoek)用自制的简单显微镜观察并发现了许多微生物。一大批研究者在19世纪下半叶推动了微生物学研究的蓬勃发展,其中贡献最突出的有巴斯德、科赫、贝耶林克和维诺格拉德斯基。微生物学的一套基本技术在19世纪后期均已完善,包括显微术、灭菌方法、加压灭菌器(Chamberland,1884)、纯培养技术、革兰氏染色法(Gram,1884)、培养皿(Petri,1887)和琼脂作凝固剂等。[9]

巴斯德

微生物学家巴斯德原是化学家,曾在化学上做出过重要的贡献,后来转向微生物学研究领域,为微生物学的建立和发展做出了卓越的贡献。主要集中在下列三个方面:① 彻底否定了“自然发生”学说。“自生说”是一个古老学说,认为一切生物是自然发生的。到了17世纪,虽然由于研究植物和动物的生长发育和生活循环,是“自生说”逐渐消弱,但是由于技术问题,如何证实微生物不是自然发生的仍是一个难题,这不仅是“自生说”的一个顽固阵地,同时也是人们正确认识微生物生命活动的一大屏障。巴斯德在前人工作的基础上,进行了许多试验,其中著名的曲颈瓶试验无可辩驳地证实,空气内确实含有微生物,他们引起有机质的腐败。巴斯德自制了一个具有细长而弯曲的颈的玻瓶,其中盛有有机物水浸液,经加热灭菌后,瓶内可一直保持无菌状态,有机物不发生腐败,一旦将瓶颈打断,瓶内浸液中才有了微生物,有机质发生腐败。巴斯德的试验彻底否定了“自生说”,并从此建立了病原学说,推动了微生物学的发展。[10]

② 免疫学——预防接种。Jenner虽然早在1798年发明了种痘法可预防天花,但却不了解这个免疫过程的基本机制,因此,这个发现没能获得继续发展。1877年,巴斯德研究了鸡霍乱,发现将病原菌减毒可诱发免疫性,以预防鸡霍乱病。其后它又研究了牛、羊炭疽病和狂犬病,并首次制成狂犬疫苗,证实其免疫学说,为人类防病、治病做出了重大贡献。[10]

③ 证实发酵是由微生物引起的。究竟发酵是一个由微生物引起的生物过程还是一个纯粹的化学反应过程,曾是化学家和微生物学家激烈争论的问题。巴斯德在否定“自生说”的基础上,认为一切发酵作用都可能与微生物的生长繁殖有关。经不断地努力,巴斯德终于分离到了许多引起发酵的微生物,并证实酒精发酵是由酵母菌引起的。还研究了氧气对酵母菌的发育和酒精发酵的影响。此外,巴斯德还发现乳酸发酵、醋酸发酵和丁酸发酵都是不同细菌所引起的。为进一步研究微生物的生理生化奠定了基础。[10]

④ 其它贡献。一直沿用至今天的巴斯德消毒法(60~65℃作短时间加热处理,杀死有害微生物的一种消毒法)和家蚕软化病问题的解决也是巴斯德的重要贡献,它不仅在实践上解决了当时法国酒变质和家蚕软化病的实际问题,而且也推动了微生物病原学说的发展,并深刻影响医学的发展。[10]

柯赫

柯赫是著名的细菌学家,由于他曾经是一名医生,因此对病原细菌的研究做出了突出的贡献:①具体证实了炭疽病菌是炭疽病的病原菌;②发现了肺结核病的病原菌,这是当时死亡率极高的传染性疾病,因此柯赫获得了诺贝尔奖;③提出了证明某种微生物是否为某种疾病病原体的基本原则——柯赫原则:首先在患病肌体里存在着一种特定的病原菌,并可以从该肌体里分离得到纯培养;然后用得到的纯培养接种敏感动物,表现出特有的性状;最后从被感染的敏感动物中又一次获得与原病原菌相同的纯培养。由于柯赫在病原菌研究方面的开创性工作,自19世纪70年代至20世纪20年代成了发现病原菌的黄金时代,所发现的各种病原微生物不下百余种,其中还包括植物病原菌。柯赫除了在病原菌方面的伟大成就外,在微生物基本操作技术方面的贡献更是为微生物学的发展奠定了技术基础,这些技术包括:①用固体培养基分离纯化微生物的技术,这是进行微生物学研究的基本前提,这项技术一直沿用至今;②配制培养基,也是当今微生物研究的基本技术之一。这两项技术不仅是具有微生物研究特色的重要技术,而且也为当今动植物细胞的培养做出了十分重要的贡献。[12]

现代发展

微生物20世纪上半叶微生物学事业欣欣向荣,微生物学沿着两个方向发展,即应用微生物学和基础微生物学。在应用方面,对人类疾病和躯体防御机能的研究,促进了医学微生物学和免疫学的发展。青霉素的发现(Fleming,1929)和瓦克斯曼(Waksman)对土壤中放线菌的研究成果导致了抗生素科学的出现,这是工业微生物学的一个重要领域。[13]

环境微生物学在土壤微生物学研究的基础上发展起来。微生物在农业中的应用使农业微生物学和兽医微生物学等也成为重要的应用学科。应用成果不断涌现,促进了基础研究的深入,于是细菌和其它微生物的分类系统在20世纪中叶出现了,生物化学,微生物遗传和变异的研究导致了微生物遗传学的诞生。微生物生态学在20世纪60年代也形成了一个独立学科。20世纪80年代以来,在分子水平上对微生物研究迅速发展,分子微生物学应运而生。在短短的时间内取得了一系列进展,并出现了一些新的概念,较突出的有,生物多样性、进化、三原界学说;细菌染色体结构和全基因组测序;细菌基因表达的整体调控和对环境变化的适应机制;细菌的发育及其分子机理;细菌细胞之间和细菌同动植物之间的信号传递;分子技术在微生物原位研究中的应用。经历约150年成长起来的微生物学,在21世纪将为统一生物学的重要内容而继续向前发展,分子微生物生态学。[13]

微生物产业在21世纪将呈现全新的局面。微生物短短的300年间,特别是20世纪中叶,已在人类的生活和生产实践中得到广泛的应用,并形成了继动、植物两大生物产业后的第三大产业。这是以微生物的代谢产物和菌体本身为生产对象的生物产业,所用的微生物主要是从自然界筛选或选育的自然菌种。21世纪,微生物产业除了更广泛的利用和挖掘不同生境(包括极端环境)的自然资源微生物外,基因工程菌将形成一批强大的工业生产菌,生产外源基因表达的产物,特别是药物的生产将出现前所未有的新局面,结合基因组学在药物设计上的新策略将出现以核酸(DNA或RNA)为靶标的新药物(如反义寡核苷酸、肽核酸、DNA疫苗等)的大量生产,人类将完全征服癌症、艾滋病以及其他疾病。此外,微生物工业将生产各种各样的新产品,例如降解性塑料、DNA芯片、生物能源等,在21世纪将出现一批崭新的微生物工业,为全世界的经济和社会发展做出更大贡献。[13]

中国发展

微生物作为一门科学进行研究,中国起步较晚。中国学者开始从事微生物学研究在20世纪之初,那时一批到西方留学的中国科学家开始较系统的介绍微生物知识,从事微生物学研究。1910-1921年微生物间伍连德用近代微生物学知识对鼠疫和霍乱病原的探索和防治,在中国最早建立起卫生防疫机构,培养了第一支预防鼠疫的专业队伍,在当时这项工作居于国际先进地位。20世纪20-30年代,中国学者开始对医学微生物学有了较多的试验研究,其中汤飞凡等在医学细菌学、病毒学和免疫学等方面的某些领域做出过较高水平的成绩,例如沙眼病原体的分离和确认是具有国际领先水平的开创性工作。[13]

现代化的发酵工业、抗生素工业、生物农药和菌肥工作已经形成一定的规模,特别是改革开放以来,中国微生物学无论在应用和基础理论研究方面都取得了重要的成果,例如中国抗生素的总产量已跃居世界首位,中国的两步法生产维生素C的技术居世界先进水平。中国学者瞄准世界微生物学科发展前沿,进行微生物基因组学的研究,现已完成痘苗病毒天坛株的全基因组测序,2013年又对中国的辛德毕斯毒株(变异株)进行了全基因组测序。1999年又启动了从中国云南省腾冲地区热海沸泉中分离得到的泉生热袍菌全基因组测序,2013年取得可喜进展。中国微生物学进入了一个全面发展的新时期。但从总体来说,中国的微生物学发展水平除个别领域或研究课题达到国际先进水平,为国外同行承认外,绝大多数领域与国外先进水平相比,尚有相当大的差距。因此如何发挥中国传统应用微生物技术的优势,紧跟国际发展前沿,赶超世界先进水平,还需作出艰苦的努力。[13]

相互作用

在分子水平上研究微生物病原体的变异规律、毒力和致病性,对于传统微生物学来说是一场革命。微生物以人类基因组计划为代表的生物体基因组研究成为整个生命科学研究的前沿,而微生物基因组,研究又是其中的重要分支。世界权威性杂志《科学》曾将微生物基因组研究评为世界重大科学进展之一。通过基因组研究揭示微生物的遗传机制,发现重要的功能基因并在此基础上发展疫苗,开发新型抗病毒、抗细菌、真菌药物,将对有效地控制新老传染病的流行,促进医疗健康事业的迅速发展和壮大! 从分子水平上对微生物进行基因组研究为探索微生物个体以及群体间作用的奥秘提供了新的线索和思路。[13]

为了充分开发微生物(特别是细菌)资源,1994年美国发起了微生物基因组研究计划(MGP)。通过研究完整的基因组信息开发和利用微生物重要的功能基因,不仅能够加深对微生物的致病机制、重要代谢和调控机制的认识,更能在此基础上发展一系列与我们的生活密切相关的基因工程产品,包括:接种用的疫苗、治疗用的新药、诊断试剂和应用于工农业生产的各种酶制剂等等。通过基因工程方法的改造,促进新型菌株的构建和传统菌株的改造,全面促进微生物工业时代的来临。[13]

世界地位

当人类在发现和研究微生物之前,把一切生物分成截然不同的两大界-动物界和植物界。随着人们对微生物认识的逐步深化,从两界系统经历过三界系统、四界系统、五界系统甚至六界系统,直到70年代后期,美国人Woese等发现了地球上的第三生命形式-古菌,才导致了生命三域学说的诞生。该学说认为生命是由古菌域(Archaea)、细菌域(Bacteria)和真核生物域(Eucarya)所构成。在图示“生物的系统进化树”中,左侧的黄色分枝是细菌域;中间的褐色和紫色分枝是古菌域;右侧的绿色分枝是真核生物域。古菌域包括嗜泉古菌界(Crenarchaeota)、广域古菌界(Euryarchaeota)和初生古菌界(Korarchaeota);细菌域包括细菌、放线菌、蓝细菌和各种除古菌以外的其它原核生物;真核生物域包括真菌、原生生物、动物和植物。除动物和植物以外,其它绝大多数生物都属微生物范畴。由此可见,微生物在生物界级分类中占有特殊重要的地位。生命进化一直是人们关注的热点。Brown等依据平行同源基因构建的“Cenancestor”生命进化树,认为生命的共同祖先Cenancestor是一个原生物。原生物在进化过程中产生两个分支,一个是原核生物(细菌和古菌),一个是原真核生物,在之后的进化过程中细菌和古菌首先向不同的方向进化,然后原真核生物经吞食一个古菌,并由古菌的DNA取代寄主的RNA基因组而产生真核生物。从进化的角度,微生物是一切生物的老前辈。如果把地球的年龄比喻为一年的话,则微生物约在3月20日诞生,而人类约在12月31日下午7时许出现在地球上。[14]

地下微生物

1989年,美国几所大学和能源部的一些专家,在南卡罗来纳州进行调查时,发现了一个“全新的生态系统”。他们在550米的地表下发现了3000多种微生物组织,其中有许多属首次发现。

这些微生物,大多数是从地下水里吸收氧气,而另一些则不需要氧气就能生存。这些微生物吸收养料少,新陈代谢缓慢,它们的生存就像一些地表动物冬眠一样。[14]

地下微生物

海洋微生物

微生物定义

英文名称:marine microorganism

定义1:分布在海洋中的个体微小、形态结构简单的单细胞或多细胞生物。

所属学科:水产学(一级学科);水产基础科学(二级学科)

定义2:海洋中个体微小,构造简单的低等生物的总称。包括细菌、放线菌、霉菌、酵母、病毒、衣原体、支原体、噬菌体和微型藻及微型原生动物等。

所属学科:资源科技(一级学科);海洋资源学(二级学科)

以海洋水体为正常栖居环境的一切微生物。但由于学科传统及研究方法的不同,本文不介绍单细胞藻类,而只讨论细菌、真菌及噬菌体等狭义微生物学的对象。海洋细菌是海洋生态系统中的重要环节。[15]

特性

嗜盐性

海洋微生物最普遍的特点。真正的海洋微生物的生长必需海水。海水中富含各种无机盐类和微量元素。钠为海洋微生物生长与代谢所必需此外,钾、镁、钙、磷、硫或其他微量元素也是某些海洋微生物生长所必需的。[15]

嗜冷性

大约90%海洋环境的温度都在5℃以下,绝大多数海洋微生物的生长要求较低的温度,一般温度超过37℃就停止生长或死亡。那些能在 0℃生长或其最适生长温度低于20℃的微生物称为嗜冷微生物。嗜冷菌主要分布于极地、深海或高纬度的海域中。其细胞膜构造具有适应低温的特点。那种严格依赖低温才能生存的嗜冷菌对热反应极为敏感,即使中温就足以阻碍其生长与代谢。[15]

嗜压性

海洋中静水压力因水深而异,水深每增加10米,静水压力递增1个标准大气压。海洋最深处的静水压力可超过1000大气压。深海水域是一个广阔的生态系统,约56%以上的海洋环境处在100~1100大气压的压力之中,嗜压性是深海微生物独有的特性。来源于浅海的微生物一般只能忍耐较低的压力,而深海的嗜压细菌则具有在高压环境下生长的能力,能在高压环境中保持其酶系统的稳定性。研究嗜压微生物的生理特性必需借助高压培养器来维持特定的压力。那种严格依赖高压而存活的深海嗜压细菌,由于研究手段的限制迄今尚难于获得纯培养菌株。根据自动接种培养装置在深海实地实验获得的微生物生理活动资料判断,在深海底部微生物分解各种有机物质的过程是相当缓慢的。[15]

低营养性

海水中营养物质比较稀薄,部分海洋细菌要求在营养贫乏的培养基上生长。在一般营养较丰富的培养基上,有的细菌于第一次形成菌落后即迅速死亡,有的则根本不能形成菌落。这类海洋细菌在形成菌落过程中因其自身代谢产物积聚过甚而中毒致死。这种现象说明常规的平板法并不是一种最理想的分离海洋微生物方法。[15]

多形性

在显微镜下观察细菌形态时,有时在同一株细菌纯培养中可以同时观察到多种形态,如球形椭圆形、大小长短不一的杆状或各种不规则形态的细胞。这种多形现象在海洋革兰氏阴性杆菌中表现尤为普遍。这种特性看来是微生物长期适应复杂海洋环境的产物。

发光性

在海洋细菌中只有少数几个属表现发光特性。发光细菌通常可从海水或鱼产品上分离到。细菌发光现象对理化因子反应敏感,因此有人试图利用发光细菌为检验水域污染状况的指示菌。[15]

空间微生物

生态学的研究表明,地球是万物生存的摇篮,它包括陆域生态系、水域生态系及环绕地球的大气生态系等自然生态系。能够存活于大气层环境中的微生物构成了自然界中大气微生物生态系。大气层分为对流层、同温层和电离层。由于大气层随着高度的上升,温度很快下降(对流层的温度只有-43——-83摄氏度),不利于生命活动的化学、物理等因子(臭氧、微重力、UV射线等)也增强,因此,这一生态系中微生物只有抗逆休眠体及来源于带有微生物细胞或孢子的尘埃、雾滴、动物呼吸和排泄物等。微生物一旦进入或者超越自然生态系中的电离层,由于银河射线及地磁俘获辐射形成的强辐射、微重力等空间环境因子的作用就难以存活。尽管如此,一门研究地球以外生命(包括其他星球上的生命)的新兴科学——《外空生物学》(Exobiology)正在形成。这一研究领域里,外空生物学家一方面利用各种航天飞行器(高空气球、轨道卫星、空间站、航天飞机等)探索生物对空间环境因子作用的反应(即生物学效应),为人类征服空间提供理论知识和技术依据,及空间生物学(Space Biology)研究的主要内容:另一方面越来越多的科学家还试图通过从包括火星、月球、木星等其他星球上取回的岩石和尘埃样品的检测,寻找地球外可能存在的生命形式。[12]

研究技术

显微

工具是人类器官的延伸。要观察肉眼看不到的微生物,没有适当工具是不可能的。前面所说的列文虎克用显微镜揭示微小的生命世界之前80多年,有个叫杨森的荷兰人已经制造出显微镜,而且在列文虎克之前,英国人虎克已经描绘过显微镜下长在皮革上的兰色霉菌的形态(图1),不过,看到细菌、原生动物等活的微生物,并把它们的运动记录下来的第一人是列文虎克(图2)。随着工业发展和技术进步,显微镜经过300多年的改进,2013年已经是林林总总,形式多样了。但从功能上说,无非是从器具和观察对象两方面着手提高放大倍数和增加分辨细微结构能力。在器具上,包括选择投射于物体上的波束的性质及为便于观察而不断改善操纵装置;在观察对象上,则是如何突显待观察的部分。波束有光波和电磁波,用光波的叫做光学显微镜,用电磁波的叫电子显微镜。

光波只能对大于其波长的物体造象,可见光的波长大约是0.4—0.8微米,所以光学显微镜不可能观察到小于200纳米(0.2微米)的物体,2013年的光学显微镜放大和分辨效率已经越来越接近其极限,大约可以将对象放大2000倍。电磁波的波长是光波波长的十万分之一,电子显微镜的放大倍数可以达到百万,可以分辨十分之一纳米。这样,不仅可以看到细胞中许多细微结构,还能观察分子的形态。[10]

无菌操作

显微镜技术问世而使人类开始认识了微生物,然而在对微生物的生命活动和功能有所知晓之前,微生物学并没有诞生。促使微生物学迅速诞生的,是无菌操作技术和纯种培养技术。在1861年,伟大的微生物学家巴斯德做了一个有名的实验。对于微生物学发展具有决定性的作用。[10]

巴斯德用一个有长颈的圆底烧瓶装上肉汤,如果就这么放着,几天后肉汤便浑浊发臭了,用显微镜可以观察到里面长了许多细菌。如果把长长的瓶颈用火焰烧成弯曲状,虽然瓶口还是和外界相通,氧气可以自由出入,可是肉汤放置很长时间也不会变浑浊。如果把里面的肉汤从弯曲处往瓶口倾折,让液体接触瓶口,再让液体流回瓶中,几天后,液体又变浑发臭了。巴斯德这个实验充分说明,肉汤之所以变浑发臭,是肉汤里面的细菌繁殖造成的,如果加热杀死了肉汤里面的细菌,又不让外面的细菌进去,肉汤就不会有细菌生长。液体和瓶口接触后,因为空气中的尘埃和细菌沾在瓶口,通过肉汤进入瓶内,所以几天后会变浑发臭。而且,烧瓶尽管有弯长的颈,可是瓶口是和外界相通的,空气可以自由进入,所以可以保证里面有氧气,所以不是没有氧气而使细菌不能生长。

直到20世纪60年代,在伦敦的一个研究所中,还一直保存着19世纪后期为否定自然发生论所用的的一些陈年肉汤,它们在70年后依然清亮如故。巴斯德这个简单但是具有说服力的著名实验,证实了微生物只能从微生物产生而不能自然地从没有生命的物质发生。从此,人们开始认识到无菌操作的重要。灭过菌的物质在适当保护下将保持无菌状态,除非有人去感染它。巴斯德奠定了这个微生物学的基本原理。[10]

纯种培养

自然界中,各种微生物之间并不是离群素居,彼此老死不相往来的。在任何天然环境中,都有多种微生物共同生活。土壤是微生物的大本营,1克普通的菜园土中就有数百种微生物,个体数量可能超过上亿。连人的口腔中也有几十种细菌。由于巴斯德对葡萄酒变质的研究,人们认识到某种微生物和物质的某种化学变化有直接关系,酵母菌可以把葡萄酒里的葡萄糖变成酒精,醋酸细菌可以使葡萄酒变酸。[10]

巴斯德和其他一些学者的工作又证明传染病是由某些微生物感染所致。既然每种微生物有不同的形态和生理特征,它们在自然界的作用和对人类的影响也必然有差异。我们要了解某种微生物对于人类有害还是有益,或者2013年与人类还没有什么特别密切的关系,就必须单独把这种微生物分离出来研究。这就是在无菌技术的基础上微生物学的另一项基本技术——纯种分离技术。[10]

实验室

生物化学技术

PCR技术PCR技术采用体外酶促反应合成特异性DNA片段,再通过扩增产物来识别细菌。由于PCR灵敏度高,理论上可以检出一个细菌的拷贝基因,因此在细菌的检测中只需短时间增菌甚至不增菌,即可通过PCR进行筛选,节约了大量时间,但PCR技术也存在一些缺点:食物成分、增菌培养基成分和其他微生物DNA对Taq酶具有抑制作用,可能导致检验结果假阴性;操作过程要求严格,微量的外源性DNA进入PCR后可以引起无限放大产生假阳性结果,扩增过程中有一定的装配误差,会对结果产生影响。由于以上原因,PCR技术对操作者的自身素质要求很高,对于基层单位而言难以做到。短时间内也不会有经济效益和社会效益,因此影响了这项技术在基层的应用。[16]

基因探针技术基因探针技术利用具有同源性序列的核酸单链在适当条件下互补形成稳定的DNA?RNA或DNADNA链的原理,采用高度特异性基因片段制备基因探针来识别细菌。基因探针的优点是减少了基因片段长度多态性所需要分析的条带数。如法国生物一梅里埃公司的GEN?PROBE基因探针检测系统,对于分离到的单个菌落,30 min完成微生物的确证试验,基因探针的缺点是不能鉴定目标菌以外的其他菌。[16]

免疫学技术

免疫学技术通过抗原和抗体的特异性结合反应,再辅以免疫放大技术来鉴别细菌。免疫方法的优点是样品在进行选择性增菌后,不需分离,即可采用免疫技术进行筛选。由于免疫法有较高灵敏度,样品经增菌后可在较短的时间内达到检出度,抗原和抗体的结合反应可在很短时间内完成。此技术对操作者要求也不高,是目前为止基层单位应用时间最长最为广泛的一项快速检测技术。如采用免疫磁珠法可有效地收集、浓缩神奈川现象阳性的副溶血性弧菌,可显著提高环境样品及食品中病原性副溶血性弧菌的检出率。胶体金免疫层析法能快速、灵敏检测金黄色葡萄球菌,应用胶体金免疫层析法检测乙型肝炎表面抗原,可大大提高工作效率。ATP生物发光法是发展较快的一种用于食品生产加工设备洁净度检测的快速检测方法。利用ATP生物发光分析技术和体细胞清除技术,测量细菌ATP和体细胞ATP, 细菌ATP的量与细菌数成正比,用ATP生物发光分析技术检测肉类食品细菌污染状况或食品器具的现场卫生学检测,都能够达到快速适时的目标。微型自动荧光酶标分析法(mini VIDAS)是利用酶联荧光免疫分析技术,通过抗原-抗体特异反应,分离出目标菌,由特殊仪器根据荧光的强弱自动判断样品的阳性或阴性。VIDAS法检测冻肉中沙门菌具有很高的灵敏度和特异性,用于进出口冻肉的检测,可大大缩短检验时间,加快通关速度,检测冻肉中李斯特氏菌亦如此。[16]

全自动微生物分析系统(AMS)

AMS是一种由传统生化反应及微生物检测技术与现代计算机技术相结合,运用概率最大近似值模型法进行自动微生物检测的技术,可鉴定由环境、原料及产品中分离的微生物。AMS仅需4~18 h即可报告结果,以常规法鉴定细菌,只能得到是或不是某种菌,要想知到是哪种菌还要做大量、烦琐的生化试验,而AMS则可以直接报告是什么菌。法国生物梅里埃集团公司出品的Vitek?AMS自动微生物检测系统属当今世界上最为先进、自动化程度最高的细菌鉴定仪器之一。Vitek对细菌的鉴定是以每种细菌的微量生化反应为基础,不同种类的Vitek试卡(检测卡)含有多种的生化反应孔,可达30种,可鉴定405种细菌。用AMS明显缩短肠道菌生化鉴定的时间,如鉴定沙门菌属只需4 h,鉴定志贺氏菌属只需6 h,鉴定霍乱弧菌等致病性弧菌亦只需4~13 h。这套系统对基层单位而言具有极强的应用价值,但他昂贵的价格让人望而生畏。[16]

分离培养

微生物在自然界中呈混杂状态存在,要获得所需菌种,必需从中把它们分离出来。在保存菌种时不慎受到到污染也需予以分纯。微生物分离和纯化的方法很多,但基本原理却是相似的,即将待分离的样品进行一定的稀释,并使微生物的细胞(或孢子)尽量以分散状态存在,然后使其长成一个个纯种单菌落。然而上述工作又离不开接种,即将一种微生物移到另一灭过菌的培养基上的过程。[10]

微生物接种分类材料工具

1.恒温培养箱

2.接种环、玻璃棒、吸管、酒精灯

3.培养基

4.大肠杆菌、枯草杆菌、金黄色葡萄球菌、酵母菌等

方法步骤

接种操作方法

斜面接种(接金黄葡萄球菌)

(1)操作前,先用75%酒精擦手,待酒精挥发后点燃酒精灯。

(2)将菌种管和斜面握在左手大拇指和其它四指之间,使斜面和有菌种的一面向上,并处于水平位置。

(3)先将菌种和斜面的棉塞旋转一下,以便接种时便于拔出。

(4)左手拿接种环(如握钢笔一样),以火焰上先将环端烧红灭菌,然后将有可能伸入试管其余部位也过火灭菌。

(5)用右手的无名指、小指和手掌将菌种管和待接斜面试管的棉花塞或试管帽同时拔出,然后让试管口缓缓过火灭菌(切勿烧过烫)。

(6)将灼烧过的接种环伸入菌种管内,接种环在试管内壁或未长菌苔的培养基上接触一下,让其充分冷却,然后轻轻刮取少许菌苔,再从菌种管内抽出接种环。

(7)迅速将沾有菌种的接种环伸入另一支待接斜面试管。从斜面底部向上作“Z”形来回密集划线。有时也可用接种针仅在培养基的中央拉一条线来作斜面接种,以便观察菌种的生长特点。

(8)接种完毕后抽出接种环灼烧管口,塞上棉塞。

(9)将接种环烧红灭菌。放下接种环,再将棉花塞旋紧。[10]

液体接种

(1)由斜面培养基接入液体培养基,此法用于观察细菌的生长特性和生化反应的测定,操作方法与前相同,但使试管口向上斜,以免培养液流出接入菌体后,使接种环和管内壁磨擦几下以利洗下环上菌体。接种后塞好棉塞将试管在手掌中轻轻敲打,使菌体充分分散。

(2)由液体培养基接种液体培养基,菌种是液体时,接处除用接种环外尚用无菌吸管或滴管。接种时只需在火焰旁拔出棉塞,将管口通过火焰,用无菌吸管吸取菌液注入培养液内,摇匀即可。[10]

平板接种

将菌在平板上划线和涂布。

(1)划线接种 见分离划线法。

(2)涂布接种 用无菌吸管吸取菌液注入平板后,用灭菌的玻棒在平板表面作均匀涂布。[10]

穿刺接种

把菌种接种到固体深层培养基中,此法用于嫌气性细菌接种或为鉴定细菌时观察生理性能用。

(1)操作方法与上述相同,但所用的接种针应挺直。

(2)将接种针自培养基中心刺入,直刺到接近管底,但勿穿透,然后尚原穿刺途径慢慢拔出。[10]

分离操作方法

稀释分离法

通过不断稀释使被分离的样品分散到最低限度,然后吸取一定量注入平板与温度适合溶化了的琼脂培养基混合,这样分散的细菌被固定在原处而形成单菌落。

(1)将大肠杆菌或酵母菌用无菌水制作菌悬液。

(2)取若干支无菌试管,每支内盛9ml无菌水。

(3)吸取1ml制备好的菌悬液,置于第一支含有9ml无菌水的试管内,这样就稀释了10倍,也就是10-2。

(4)从第一支试管内(10-2)吸取1ml注入第二支含有无菌水的试管内,这样就稀释了100倍,也就是10-2。

(5)用同样方法操作,直至稀释至10-5-10-6。

(6)分别精确吸取10-5-10-6各稀释度菌液0.2ml加入编好号的空无菌平皿中,同一稀释度重复做三个平皿。

(7)将已溶化并冷却至45℃的琼脂培养基倒入上述各平皿内,轻轻旋转使培养基与菌悬液充分混匀,凝固后倒置于37℃或38℃度恒温箱中培养24-48小时,观察平板上菌落生长和分布情况。[10]

平板划线分离法

平板划线分离法是接种环在平板培养基表面通过分区划线而达到分离微生物的一种方法。其原理是将微生物样品在固体培养基表面多次作“由点到线”稀释而达到分离目的。

(1)倒平板 溶化牛肉膏蛋白胨琼脂培养基倒平板,水平静置待凝。

(2)在酒精灯光焰上灼烧接种环,待冷,取一接种环金黄葡萄球菌、大肠杆菌混合菌液。

(3)左手握琼脂平板稍抬起皿盖,同时靠近火焰周围,右手持接种环伸入皿内,在平板上一个区域作之形回划线,划线时例接种环与平板表面成30-40°角度轻轻接触,以腕力在表面作轻快的滑动,勿使平板表面划破或嵌进增基内。

(4)灼烧接种杯,以杀灭接种环上尚残余的菌液,待冷却后,再将接种环伸入皿内,在第一区域划过线的地方稍接触一下后,转动90°,在第二区域继续划线。

(5)划毕后再灼烧接种杯,冷却后用同样方法在其他区域划线。

(6)全部划线完毕后,在平皿底用特种蜡笔注明菌种、日期、组别、姓名。将整个培养皿倒置放入恒温培养箱。

(7)37℃经过24-48小时培养后取出观察。注意菌落的开关、大小、颜色、边缘、表面结构、透明度等性状。[10]

注意事项

(1)接种室应保持清洁,用煤粉酚皂液擦洗台面及墙壁,定期用乳酸或甲醛熏蒸。每次使用前,均应用紫外灯灭菌。定期对接种室作无菌程度的检查。

(2)进入接种室前,应先做好个人卫生工作,在缓冲间内要更换工作鞋帽、工作衣、戴口罩。工作衣、工作鞋、口罩只准在接种室内使用。不准穿到其它地方去,并要定期更换、消毒。

(3)接种的试管、三角并瓶等应做好标记,注明培养基、菌种的名称、日期。移入接种室内的所有物品,均须在缓冲室用70%酒精擦试干净。

(4)接种前,双手用70%酒精或新洁尔消毒,操作过程不离开酒精灯火焰;棉塞不乱放;接种工具使用前后均需火焰灭菌。

(5)培养箱应经常清洁消毒。[10]

参考资料

[1]  微生物的知识.昌平科普网.2013-11-21 [引用日期2015-11-28]

[2]  周德庆.微生物学教程.北京市西城区德外大街4号:高等教育出版社,2013年12月

[3]  第二届微生物学名词审定委员会.微生物学名词(第二版).北京:科学出版社,2012:1

[4]  沈萍; 陈向东.微生物学复兴的机遇、挑战和趋势.武汉大学生命科学学院:微生物学报,2010年01期

[5]  细菌没有氧气也能生活 澳大利亚发现最古老微生物化石.科技世界网.2013-05-08 [引用日期2015-11-28]

[6]  胡洁.细菌觅食优化算法的改进及应用研究.武汉理工大学:武汉理工大学,2012-03-01

[7]  田新朋; 张偲; 李文均.海洋放线菌研究进展.微生物学报,2011-02-04

[8]  陈英虎; 尚世强; 俞蕙.人感染埃博拉病毒的研究进展.中国循证儿科杂志,2014-08-05

[9]  微生物学的发展.食品伙伴网 [引用日期2013-09-19]

[10]  常见的微生物的接种、分离和培养.常见的微生物的接种、分离和培养 [引用日期2014-07-02]

[11]  周莲; 王杏雨; 何亚文.植物病原黄单胞菌DSF信号依赖的群体感应机制及调控网络.中国农业科学,2013-07-16

[12]  黄素文; 杨文潮; 倪健波; 胡桃燕; 王建峰.柯赫法则在橘子罐头商业无菌检验中的应用.食品研究与开发,2011-11-05

[13]  宋长青; 吴金水; 陆雅海; 沈其荣; 贺纪正; 黄巧云; 贾仲君; 冷疏影; 朱永官.中国土壤微生物学研究10年回顾.地球科学进展,2013年第10期

[14]  贺纪正; 李晶; 郑袁明.土壤生态系统微生物多样性-稳定性关系的思考 .生物多样性,2013-06-26

[15]  洪义国; 孙谧; 张云波; 李勃生.16SrRNA在海洋微生物系统分子分类鉴定及分子检测中的应用.海洋水产研究,2002-03-30

[16]  张晶; 张惠文; 张成刚.实时荧光定量PCR及其在微生物生态学中的应用.生态学报,2005-06-25

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容

  • 原文来自:Dickson R P, Erb-Downward J R, Huffnagle G B. The ro...
    zd200572阅读 1,594评论 0 7
  • 0 绪论 0.1 什么是微生物?它包括哪些类群? 微生物是一切肉眼看不 见或看不清的微小生物的总称。类群包括所有无...
    Ksashi阅读 16,823评论 0 46
  • 病毒(virus)是由一个核酸分子(DNA或RNA)与蛋白质构成的非细胞形态,靠寄生生活的介于生命体及非生命体之间...
    杜遥阅读 4,679评论 1 3
  • 医学微生物是我大一下的时候学的,它的封面如下图所示。 学这门课要记忆的东西比较多。我列了框架,把每一个章节重点的部...
    竹个个阅读 7,046评论 6 42
  • **微生物群落多样性的基本概念**环境中微生物的群落结构及多样性和微生物的功能及代谢机理是微生物生态学的研究热点。...
    相见很不晚阅读 9,905评论 1 47