利用GSEA对基因表达数据做富集分析

image

Gene Set Enrichment Analysis (GSEA) is a computational method that determines whether an a priori defined set of genes shows statistically significant, concordant differences between two biological states (e.g. phenotypes).

用GSEA做富集分析是非常简单的,结果也很详细,并且直接出图;这个软件发表于2005年,一直都在不断更新和增加新的功能;软件基于的数据库Molecular Signatures Database也会根据新发表的文章进行完善。

GSEA软件版本了解

  • GSEA设计了操作比较简单的桌面软件;
  • GSEA也提供在无网络情况下的一个命令操作版本;
  • 基于R的版本,但是2005后不再提供更新;
  • GenePattern平台也有GSEA模块。

GSEA软件下载与安装

GSEA download

根据自己电脑内存大小下载适合的版本:


image.png

GSEA界面


1).圈1所在是导航栏,展示主要操作;
2).圈2是进度栏;当你进行分析时,查看分析进程与成功与否;成功后在此处可以查看网页版结果;
3).圈3是主页面,在此进行各种操作与分析;

GSEA运行

官网也准备了例子:
Example Datasets(http://software.broadinstitute.org/gsea/datasets.jsp)

这儿使用P53这个例子:

  • p53+ 与P53突变癌细胞系的表达谱
  • Molecular Signatures Database C2数据基因集合

1. 下载数据

P53.cls #表型文档定义了表达文档中样品的表型标签,使用空格或tab隔开;

P53_collapsed_symbols.gct #基因表达谱数据

P53_hgu95av2.gct #基因芯片表达谱数据

GSEA软件需要的数据格式可参考:GSEA软件支持的数据格式

2. 点击导航栏Load data导入数据

3种不同的方法均可以导入数据:

  • Method 1: Browse for files #上传各种文件;
  • Method 2: Load last dataset used #使用最近用过的数据;
  • Method 3: Drag-and-drop the files hereke #把文件拖曳至此处上传;

导入例子数据(p53)

P53_collapsed_symbols.gct #基因表达谱数据

P53.cls #表型文档定义了表达文档中样品的表型标签,使用空格或tab隔开;

导入数据需要没有报错: There were NO errors

在Object cache查看导入的数据;


3. Run GSEA

点击软件导航栏Run GSEA,选择数据并进行参数设定;

参数主要分为三部分:

  • Required fields: #必须设置的参数

Expression dataset: #选择要分析的表达数据,P53_collapsed_symbols.gct。

Gene sets database: #选择基因集 ,Molecular Signatures Database,MSigDB

Number of permutations: #样品用于置换检验检验重复次数,一般1000。

Phenetype labels: #选择表型数据。

collapsed to gene symbols: #默认true,表达数据中探针名转换成gene symbols;

P53_collapsed_symbols.gct中是已经转换为基因名字,不需要这一步,选择false;

Permutation type: #phenotype用于每个表型组至少7个样本的实验;Gene_set用于表型组样本数少于7个的时候。

Chip platform: #选择Chip注释文件,用于collapsed to gene symbols这一步;

  • Basic fields: #可选参数

Analysis name: 设定分析结果前缀

Metric for ranking genes:选定对基因打分和排序的模式;

Gene list sorting mode:基因排序可以选择使用原值(default)和绝对值。

Gene list ordering mode:基因排序是递增还是递减。

Max size:基因集基因数目上限。

Min size:基因集基因数目下限。

Save results in this folder:结果保存路径

  • Advanced fields: # 高级参数

建议使用默认,不要随意改动。

Collapsing mode for probe sets => 1 gene:#使用芯片数据时,基因表达值的计算;

max_probe (default):#芯片集中最大值作为基因表达值;

median_of_probes: #芯片集均值作为基因表达值

Normalization mode: #富集分数( Enrichment scores,ES)的标准化方法;

Normalized Enrichment Score (NES)方法:


Randomization mode:

no_balance (default):完全随机抽样

equalize_and_balance:分别从不同表型组抽取相同数目样本;

4. 运行及处理进程观察

参数设置完成之后,点击run开始运行;左下角GSEA reports板块可以检测运行情况;


Running:正在分析,可以暂停;
Success:分析成功,点击Success,可以查看网页报告;
Error:分析出错,点击Error,查看出错详情;

5. 结果查看

5.1 GSEA结果中的统计量:

Enrichment Score (ES)

Normalized Enrichment Score (NES)

False Discovery Rate (FDR)

Nominal P Value

Enrichment Score (ES)

img
  • 最上面的绿线是遍历排好序的基因列表是计算ES值的过程:遍历基因集L ,当基因出现在S中加分,反之减分;加减分值由基因与表型的相关性决定。当分值累积到最大时就是富集分数。

ES值:Phit -Pmiss最大值

预先定义的基因集S;待分析基因列表L;指数P的选择用来控制ES分布;r(gj)=rj 是定义的基因与表型的相关性系数。

L中第i个基因前有基因j也属于基因集S,Phit(S,i)=Phit(S,i)+|rj|p /NR ;与之相反,L中第i个基因前有基因j不属于属于基因集S时,Pmiss(S,i)增加。

  • 中间黑线位置表示预定义基因集中基因在排好序的基因列表中的位置;
  • 底部展示基因排列的一个度量分数,正数表示与第一个表型相关,负数表示与第二个表型相关;对于连续性表型的话,正数表示相关,负数表示不相关;

Normalized Enrichment Score (NES)

NES是基于样本的置换检验π,样本重新抽样使得基因表达值变化从而影响到基因排序和ES(S, π)。


False Discovery Rate (FDR)

一般情况下可用FDR<0.25;如果样本较少以至于Permutation type使用了 gene_set,FDR<0.05更合适。

这儿,FDR有两种分布:

img
img

Nominal P Value

置换检验中ES(S)统计分布中无效假设成立时ES的比率。

5.2 设置的结果生成路径下会有结果生成:

基因列表排序:例如P53_collapsed_symbols.P53.cls_WT_versus_MUT.rnk

基因集结果网页版:例如AMUNDSON_DNA_DAMAGE_RESPONSE_TP53.html

基因集结果统计表:例如AMUNDSON_DNA_DAMAGE_RESPONSE_TP53.xls

以及一些图。。。。。。

5.3 点击Success,可以查看网页报告

6. Running the Leading Edge Analysis

After running a gene set enrichment analysis, you can use the leading edge analysis to examine the genes in the leading edge subsets of selected enriched gene sets. Genes that appear in multiple subsets are more likely to be of interest than those that appear in only one.

6.1 左边导航栏点击Leading Edge Analysis;

6.2 导入数据:点击Load GSEA Results导入刚才分析完的P53的结果;


6.3 选择基因集:点击数据每列列名,调整数据排列顺序,选择基因集(FDR < 0.05);


6.5 结果输出

结果是四幅图,解读可参考( Interpreting Leading Edge Analysis Results

Heat Map

不同基因集中富集基因表达情况:颜色 (red, pink, light blue, dark blue) 表示着表达值高低 (high, moderate, low, lowest)。

Set-to-Set


不同基因集间基因交集的统计展示;

Gene in Subsets

基因在基因集中出现次数统计;


Histogram

基因集相似系数


1529249944482.png

参考:

Quick Tour of the GSEA Java Desktop Application(http://software.broadinstitute.org/gsea/doc/desktop_tutorial.jsp)

GSEA User Guide(http://software.broadinstitute.org/gsea/doc/GSEAUserGuideFrame.html)

Molecular Signatures Database v6.1(http://software.broadinstitute.org/gsea/msigdb/index.jsp)

Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,324评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,303评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,192评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,555评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,569评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,566评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,927评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,583评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,827评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,590评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,669评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,365评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,941评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,928评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,159评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,880评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,399评论 2 342

推荐阅读更多精彩内容