Homogenization method 2

在博士论文《均匀化理论在骨力学中的应用》中,

第一章有一些作者自己的理解:1.关于epsilon的展开式子,如何关联宏观微观的见摄动理论;2.y=x/epsilon的理解:假定周期Y,即RVE的尺寸与整体域相比很小,材料的特征函数应该满足在微观尺度变化很大,宏观尺度变化很小。这里x对应宏观尺度,是变化很小的量,“慢”变量,而y对应微观尺度,变化快,“快”变量。另外的理解是对一个局部高速震荡,整体周期的函数phi(x),如果通过变量替换y=x/epsilon,变成phi(y),其实就是对一个周期放大了来看。另外,我自己的理解,可以看做单位换算,x单位是米,y单位是毫米。

综上,考虑函数phi的级数:phi(x,y)=phi_0(x,y)+epsilon*phi_1(x,y)+...,假设phi在大尺度x上与y无关,不含phi_0(x,y)就是phi_0(x),并且这里所有phi_i是关于x是光滑的,关于y是周期的。

第二章完全是翻译的《A review of homogenization and topology optimization I》

第三章3.2有effective property 具体怎么算(先comsol算看看,matlab写代码周期太长)


在《Generating optimal topologies in structrural design using a homogenization method》(1988年,Bendoe)中,(有E^H怎么计算)

大体思路:1.作用力下的平衡问题写成数学表达式:势能F^epsilon(v^epsilon)的最小化问题;2.带上标epsilon的式子都能进行关于epsilon的展开,具体见摄动理论;3.势能F^epsilon(v^epsilon)的展开使得在epsilon->0的时候,极限为F(v_0,v_1),条件是RVE边界的周期性,见式子(36);4.求解极限F^epsilon(v^epsilon)的最小化时,采用化为弱解形式一样的手法,得到解{u_0,u_1}满足的两个条件;5.假定u_1有个展开(式子(28)),由u_0的一介导数和y的函数phai(y)相乘的项组成,类似泰勒的一介展开项,可以理解为f'(x)(x-x_0)中,y=x-x_0,y在很小的区间内,另外,同时把4中的条件1中的u_1替换掉了,使得条件1可以写成只含宏观项的弱解形式;6.假设phai(y)满足一定条件(式子(29)),使得4中的条件2中的多重积分里面的积分项恒为0(简单的交换下phai(y)的上下标,利用Einstein和性质,就能证明),据此可以解出phai(y);7.利用条件1的只含宏观项的弱解形式,得到等效的E。

Homogenization起的作用:建立RVE的density(或者size of holes)与等效性质之间的关系;SIMP中只是简单的认为是rho^3*E,这里每次都要做有限元的。

数学技巧:1.最小化问题化为弱解形式(利用方向导数);2.Einstein和

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容