storm-workcount例子

pom.xml文件内容:

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

<modelVersion>4.0.0</modelVersion>

<groupId>com.xu.eshop</groupId>

<artifactId>storm-helloworld</artifactId>

<version>0.0.1-SNAPSHOT</version>

<packaging>jar</packaging>

<name>storm-helloworld</name>

<description>storm-helloworld</description>

<properties>

<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>

<project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding>

<java.version>1.8</java.version>

</properties>

<dependencies>

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>4.10</version>

<scope>test</scope>

</dependency>

<dependency>

<groupId>org.apache.storm</groupId>

<artifactId>storm-core</artifactId>

<version>1.1.0</version>

<!--<scope>provided</scope>-->

</dependency>

<dependency>

<groupId>commons-collections</groupId>

<artifactId>commons-collections</artifactId>

<version>3.2.1</version>

</dependency>

</dependencies>

<build>

<sourceDirectory>src/main/java</sourceDirectory>

<testSourceDirectory>src/test/java</testSourceDirectory>

<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-shade-plugin</artifactId>

<configuration>

<createDependencyReducedPom>true</createDependencyReducedPom>

<filters>

<filter>

<artifact>*:*</artifact>

<excludes>

<exclude>META-INF/*.SF</exclude>

<exclude>META-INF/*.sf</exclude>

<exclude>META-INF/*.DSA</exclude>

<exclude>META-INF/*.dsa</exclude>

<exclude>META-INF/*.RSA</exclude>

<exclude>META-INF/*.rsa</exclude>

<exclude>META-INF/*.EC</exclude>

<exclude>META-INF/*.ec</exclude>

<exclude>META-INF/MSFTSIG.SF</exclude>

<exclude>META-INF/MSFTSIG.RSA</exclude>

</excludes>

</filter>

</filters>

</configuration>

<executions>

<execution>

<phase>package</phase>

<goals>

<goal>shade</goal>

</goals>

<configuration>

<transformers>

<transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer" />

<transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer">

</transformer>

</transformers>

</configuration>

</execution>

</executions>

</plugin>

<plugin>

<groupId>org.codehaus.mojo</groupId>

<artifactId>exec-maven-plugin</artifactId>

<version>1.2.1</version>

<executions>

<execution>

<goals>

<goal>exec</goal>

</goals>

</execution>

</executions>

<configuration>

<executable>java</executable>

<includeProjectDependencies>true</includeProjectDependencies>

<includePluginDependencies>false</includePluginDependencies>

<classpathScope>compile</classpathScope>

<mainClass>com.xu.eshop.storm.WordCountTopology</mainClass>

</configuration>

</plugin>

</plugins>

</build>

</project>

WordCountTopology.java代码:

package com.xu.eshop.storm;

import org.apache.storm.Config;

import org.apache.storm.LocalCluster;

import org.apache.storm.StormSubmitter;

import org.apache.storm.spout.SpoutOutputCollector;

import org.apache.storm.task.OutputCollector;

import org.apache.storm.task.TopologyContext;

import org.apache.storm.topology.OutputFieldsDeclarer;

import org.apache.storm.topology.TopologyBuilder;

import org.apache.storm.topology.base.BaseRichBolt;

import org.apache.storm.topology.base.BaseRichSpout;

import org.apache.storm.tuple.Fields;

import org.apache.storm.tuple.Tuple;

import org.apache.storm.tuple.Values;

import org.apache.storm.utils.Utils;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import java.util.HashMap;

import java.util.Map;

import java.util.Random;

public class WordCountTopology {

    public static class RandomSentenceSpout extends BaseRichSpout {

        private static final Logger LOGGER = LoggerFactory.getLogger(RandomSentenceSpout.class);

        private Random random;

        private SpoutOutputCollector collector;

        public void open(Map map, TopologyContext topologyContext, SpoutOutputCollector collector) {

            this.collector = collector;

            this.random = new Random();

        }

        public void nextTuple() {

            Utils.sleep(100);

            String[] sentences = new String[]{"the cow jumped over the moon", "an apple a day keeps the doctor away",

                    "four score and seven years ago", "snow white and the seven dwarfs", "i am at two with nature"};

            final String sentence = sentences[random.nextInt(sentences.length)];

            LOGGER.info("发射句子:" + sentence);

            this.collector.emit(new Values(sentence));

        }

        public void declareOutputFields(OutputFieldsDeclarer declarer) {

            declarer.declare(new Fields("sentence"));

        }

    }

    public static class SplitSentence extends BaseRichBolt {

        private OutputCollector collector;

        public void prepare(Map conf, TopologyContext context, OutputCollector collector) {

            this.collector = collector;

        }

        public void execute(Tuple tuple) {

            String sentence = tuple.getStringByField("sentence");

            String[] words = sentence.split(" ");

            for(String word : words) {

                this.collector.emit(new Values(word));

            }

        }

        public void declareOutputFields(OutputFieldsDeclarer declarer) {

            declarer.declare(new Fields("word"));

        }

    }

    public static class WordCount extends BaseRichBolt {

        private static final Logger LOGGER = LoggerFactory.getLogger(WordCount.class);

        private OutputCollector collector;

        private Map<String, Long> wordCounts = new HashMap<String, Long>();

        public void prepare(Map conf, TopologyContext context, OutputCollector collector) {

            this.collector = collector;

        }

        public void execute(Tuple tuple) {

            String word = tuple.getStringByField("word");

            Long count = this.wordCounts.get(word);

            if(count == null) {

                count = 0L;

            }

            count ++;

            this.wordCounts.put(word, count);

            LOGGER.info("单词计数" + word + "出现的次数是" + count);

            this.collector.emit(new Values(word, count));

        }

        public void declareOutputFields(OutputFieldsDeclarer declarer) {

            declarer.declare(new Fields("word", "count"));

        }

    }

    public static void main(String[] args) {

        TopologyBuilder builder = new TopologyBuilder();

        builder.setSpout("RandomSentence", new RandomSentenceSpout(), 5);

        builder.setBolt("SplitSentence", new SplitSentence(), 5)

                .setNumTasks(10)

                .shuffleGrouping("RandomSentence");

        builder.setBolt("WordCount", new WordCount(), 10)

                .setNumTasks(20)

                .fieldsGrouping("SplitSentence", new Fields("word"));

        Config config = new Config();

        config.setDebug(false);

        if(args != null && args.length > 0) {

            config.setNumWorkers(3);

            try {

                StormSubmitter.submitTopology(args[0], config, builder.createTopology());

            } catch (Exception e) {

                e.printStackTrace();

            }

        } else {

            config.setMaxTaskParallelism(20);

            LocalCluster cluster = new LocalCluster();

            cluster.submitTopology("WordCountTopology", config, builder.createTopology());

            Utils.sleep(60000);

            cluster.shutdown();

        }

    }

}

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,802评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,109评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,683评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,458评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,452评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,505评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,901评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,550评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,763评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,556评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,629评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,330评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,898评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,897评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,140评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,807评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,339评论 2 342