前言
在前面两篇关于火焰检测的文章中,最终的效果不是很好,为了提高火焰检测的效果,又搜集了一些火焰数据,训练的网络由之前的yolov3-tiny改为mobilev2-yolov3,最终在树莓派上利用NCNN推算框架,比之前的效果要好很多,如图:
下面把实现的步骤和大家分享下:
在darknet下训练
训练的cfg和model文件如果需要联系笔者
在树莓派上部署NCNN
官方提供了在树莓派上的编译说明,按照这个说明是可以编译起来的。这里可以参考这篇文章来安装依赖:
sudo apt-get install git cmake
sudo apt-get install -y gfortran
sudo apt-get install -y libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
sudo apt-get install --no-install-recommends libboost-all-dev
sudo apt-get install -y libgflags-dev libgoogle-glog-dev liblmdb-dev libatlas
然后下载NCNN:
git clone https://github.com/Tencent/ncnn.git
cd ncnn
编辑CMakeList.txt文件,添加examples和benchmark:
add_subdirectory(examples)
add_subdirectory(benchmark)
add_subdirectory(tools)
然后就可以按照官方文档进行编译了,官方提供的pi3 toolchain在4代Raspbian上可以直接使用,最新版的NCNN会自动使用OpenMP:
cd <ncnn-root-dir>
mkdir -p build
cd build
cmake -DCMAKE_TOOLCHAIN_FILE=../toolchains/pi3.toolchain.cmake -DPI3=ON ..
make -j4
模型转换
cd <ncnn-root-dir>
cd build
cd tools/darknet
./darknet2ncnn mobilenetV2-yolov3.cfg mobilenetV2-yolov3.weights mobilenetV2-yolov3.param mobilenetV2-yolov3.bin 1
运行
cd <ncnn-root-dir>
cd build
cd example
./mobilenetV2-yolov3
部分代码
#include "net.h"
#include "platform.h"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <stdio.h>
#include <vector>
#include <sys/time.h>
#include <stdio.h>
#include <string.h>
#if NCNN_VULKAN
#include "gpu.h"
#endif // NCNN_VULKAN
#define MobileNetV2-yolov3_TINY 1 //0 or undef for MobileNetV2-yolov3
struct Object
{
cv::Rect_<float> rect;
int label;
float prob;
};
double what_time_is_it_now()
{
struct timeval time;
if (gettimeofday(&time,NULL)){
return 0;
}
return (double)time.tv_sec + (double)time.tv_usec * .000001;
}
ncnn::Net MobileNetV2-yolov3;
static int detect_MobileNetV2-yolov3(const cv::Mat& bgr, std::vector<Object>& objects)
{
double time;
#if NCNN_VULKAN
MobileNetV2-yolov3.opt.use_vulkan_compute = true;
#endif // NCNN_VULKAN
const int target_size = 320;
time = what_time_is_it_now();
int img_w = bgr.cols;
int img_h = bgr.rows;
//PIXEL_BGR
ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB, bgr.cols, bgr.rows, target_size, target_size);
const float mean_vals[3] = {0, 0, 0};
const float norm_vals[3] = {1 / 255.f, 1 / 255.f, 1 / 255.f};
in.substract_mean_normalize(mean_vals, norm_vals);
ncnn::Extractor ex = MobileNetV2-yolov3.create_extractor();
ex.set_num_threads(4);
ex.input("data", in);
ncnn::Mat out;
ex.extract("output", out);
printf("Predicted in %f seconds.11\n", what_time_is_it_now()-time);
printf("%d %d %d\n", out.w, out.h, out.c);
objects.clear();
for (int i = 0; i < out.h; i++)
{
const float* values = out.row(i);
Object object;
object.label = values[0];
object.prob = values[1];
object.rect.x = values[2] * img_w;
object.rect.y = values[3] * img_h;
object.rect.width = values[4] * img_w - object.rect.x;
object.rect.height = values[5] * img_h - object.rect.y;
objects.push_back(object);
}
return 0;
}
void draw_objects(cv::Mat& image, const std::vector<Object>& objects)
{
static const char* class_names[] = {"background", "fire"};
//cv::Mat image = bgr.clone();
for (size_t i = 0; i < objects.size(); i++)
{
const Object& obj = objects[i];
fprintf(stderr, "%d = %.5f at %.2f %.2f %.2f x %.2f\n", obj.label, obj.prob,
obj.rect.x, obj.rect.y, obj.rect.width, obj.rect.height);
cv::rectangle(image, obj.rect, cv::Scalar(255, 0, 0));
char text[256];
sprintf(text, "%s %.1f%%", class_names[obj.label], obj.prob * 100);
int baseLine = 0;
cv::Size label_size = cv::getTextSize(text, cv::FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
int x = obj.rect.x;
int y = obj.rect.y - label_size.height - baseLine;
if (y < 0)
y = 0;
if (x + label_size.width > image.cols)
x = image.cols - label_size.width;
cv::rectangle(image, cv::Rect(cv::Point(x, y), cv::Size(label_size.width, label_size.height + baseLine)),
cv::Scalar(255, 255, 255), -1);
cv::putText(image, text, cv::Point(x, y + label_size.height),
cv::FONT_HERSHEY_SIMPLEX, 0.5, cv::Scalar(0, 0, 0));
}
}
int main(int argc, char** argv)
{
MobileNetV2-yolov3.load_param("MobileNetV2-YOLOv3-Lite.param");
MobileNetV2-yolov3.load_model("MobileNetV2-YOLOv3-Lite.bin");
cv::VideoCapture cap(0);
if(!cap.isOpened()){
printf("capture err");
return -1;
}
cv::Mat cv_img;
std::vector<Object> objects;
while(true){
if(!cap.read(cv_img)){
printf("cv_img err");
return -1;
}
detect_MobileNetV2-yolov3(cv_img, objects);
draw_objects(cv_img, objects);
cv::imshow("video", cv_img);
cv::waitKey(1);
}
cap.release();
return 0;
}
THE END
目前测试效果还比较满意,但是每帧处理的时间需要0.3s左右,还不能实时,接下来的目标是达到实时检测,并尝试别推理框架,比如MNN和TNN。
扫描上方二维码关注“嵌入式案例Show”公众号,看更多嵌入式案例