新媒体运营就是数据加工厂

新媒体运营,是通过现代化互联网手段,通过利用微信、微博、贴吧等新兴媒体平台工具进行产品宣传、推广、产品营销的一系列运营手段。通过策划品牌相关的优质、高度传播性的内容和线上活动,向客户广泛或者精准推送消息,提高参与度,提高知名度,从而充分利用粉丝经济。达到相应营销目的。


如何实现信息与人更为精准的连接是整个社会未来探索的方向之一,这一过程其实就是一个简单的大数据加工模型。青岛泛媒体网络文化传播有限公司,成立于2017年6月8日,是在“互联网+”战略的大趋势下应势而生的全媒体运营平台。 旨在为企业打造全方位的新媒体矩阵推广,整合媒体资源,精准高效的品牌化发展之路。

为了能够给信息获取人提供最佳的内容获取决策,我们得将数据变得更加“聪明有用”,通俗来讲,企业需要能够对用户产生的每个数据进行统计、分析与开发,并以此帮助用户做出决策,这就是大数据的加工。

大数据加工的三种方法

首先我们得明白,我们得到的大数据其实是来自不同渠道的数据组合而成的,要把这些数据整合在一起,才可以发现有用的信息。但是,这个“整合”可不是一件容易的事儿。下面我们来了解一下常见的大数据“加工”方式吧。

相似关联,这种加工方式并不难理解,专业的说法叫“协同过滤”,就是要收集大量的用户浏览记录,通过相似行为进行关联推荐。比如说,我们通过大数据给两个同学贴标签,包括“性别、年龄、喜欢的颜色、喜欢的明星、爱买的东西、爱去的地方”等,然后发现A和B的标签有很多相似,我们就可以将A喜欢购买的东西推荐给B。

由于这种加工方式简单,逻辑清晰,可行性强,它被大多数企业采用,例如今日头条、天天快报等都是采用的这种算法,但它也存在缺陷。由于获取数据的手段有限,有时候并不能真实的反应出用户对信息的需求,很容易让用户深陷在自己的“兴趣爱好”当中,很难扩展。

隐式搜索,这一算法模式看起来高端,其实分开来看就简单多了,其核心内容为“搜索”,比如你在某个软件上搜索了关键词“科学”,那么该算法就会在大数据中挑选关于“科学”这一次的相关信息数据主动推送给你,同时获取你的兴趣数据。而所谓的“隐式”其实就是根据关键词“主动”推送的意思。

这一“加工”大数据的方法是建立在搜索引擎普及之后的,与“相似关联”类似的是,不同的人搜索相同的信息有不同的目的,而不同的时间地点搜同样的信息也有不同的目的,用同样的标准衡量用户行为,容易产生误判。但这种算法相比“相似关联”仍有一定优势,“相似关联”只能通过自身的标签做推送,相比而言“隐式搜索”能扩展的范围会更大。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,179评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,229评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,032评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,533评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,531评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,539评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,916评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,813评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,568评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,654评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,354评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,937评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,918评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,152评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,852评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,378评论 2 342

推荐阅读更多精彩内容