R语言Logistic回归模型验证及Nomogram绘制

本文转自易学统计R语言Logistic回归模型深度验证以及Nomogram绘制

研究背景

本章将常用的基于R语言实现二元Logistic回归模型临床预测模型的构建和验证,以及诺曼图的绘制记录下来,更为复杂的生存分析中的Cox回归将在后续章节介绍。临床预测模型的思路总结如下:①明确临床问题,确定科学假设。②查找文献,确定预测模型的研究思路。③确定模型中结局变量。④确定模型中的预测因子。⑤构建模型,计算模型预测值。⑥模型区分度评估。⑦模型校准度评估。⑧临床实用型DCA评估。

案例研究

本文采用的数据是上海交大出版<医学统计学及SAS应用>第十一章数据。预测因子有性别、年龄和高血压等级,结局变量为是否患病。本文研究目的探讨患病的危险因素构建并验证模型。因数据量少且只有一个数据集,故只用此数据集建模,并验证,若有更多外部数据,最好拿外部数据来验证模型。
临床研究一般有提供多个危险因素,首先做单因素的筛选,具体筛选方法,见公众号之前的文章。筛选完的危险因素用来构建预测模型。
具体分析步骤是,①基于这些变量构建模型。②绘制Nomogram图。③计算模型ROC曲线面积(区分度)和绘制校准曲线并检验(校准度,U检验),该步骤用神包rms一步实现。接下来直接上代码。

R代码及解读

library(rms)   ###加载rms包#
建立数据集
y <- c(0,1,0,0,0,1,1,1,0,0,0,1,1,0,0,1,0,0,0,1,1,0,1,
       1,0,1,1,1,0,1,0,1,0,0,1,1,0,0,1,1,0,1,0,0,0,1,
       1,1,1,0,1,1,0,0,0,1,1,1,0,1,1,1,1,0,0,1,1,1,0,
       0,0,1,0,1,0,1,0,1)
age <- c(28,42,46,45,34,44,48,45,38,45,49,45,41,46,49,46,44,48,
         52,48,45,50,53,57,46,52,54,57,47,52,55,59,50,54,57,60,
         51,55,46,63,51,59,48,35,53,59,57,37,55,32,60,43,59,37,
         30,47,60,38,34,48,32,38,36,49,33,42,38,58,35,43,39,59,
         39,43,42,60,40,44)
sex <- c(0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,
         0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,
         0,1,0,1,0,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,
         0,1,1,1,0,1)
ECG <- c(0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,
         0,0,1,1,0,0,1,1,0,0,1,1,0,0,2,1,0,0,2,2,0,0,2,2,
         0,1,2,2,0,1,0,2,0,1,0,2,1,1,0,2,1,1,0,2,1,1,0,2,
         1,1,0,2,1,1)
dt <- data.frame(y,age,sex,ECG)  ##把数据集设置成数据框结构
 str(dt)  ##查看每个变量结构
'data.frame':  78 obs. of  4 variables:
 $ y  : num  0 1 0 0 0 1 1 1 0 0 ...
 $ age: num  28 42 46 45 34 44 48 45 38 45 ...
 $ sex: num  0 1 0 1 0 1 0 1 0 1 ...
 $ ECG: num  0 0 1 1 0 0 1 1 0 0 ...
  head(dt) ##查看数据框前几行
  y age sex ECG
1 0  28   0   0
2 1  42   1   0
3 0  46   0   1
4 0  45   1   1

构建模型

设定环境参数#
ddist <- datadist(dt)
options(datadist='ddist')

f <- lrm(dt$y~.,data=dt)   注意此处使用lrm()函数构建
summary(f)   也能用此函数看具体模型情况,模型的系数,置信区间等

绘制nomogram图,

注意该函数里面的参数设置。

## nomogram
par(mgp=c(1.6,0.6,0),mar=c(2,2,2,2))  ##设置画布
nomogram <- nomogram(f,fun=function(x)1/(1+exp(-x)), ##逻辑回归计算公式
                     fun.at = c(0.001,0.01,0.05,seq(0.1,0.9,by=0.1),0.95,0.99,0.999),#风险轴刻度
                     funlabel = "Risk of Death", #风险轴便签
                     lp=F,  ##是否显示系数轴
                     conf.int = F, ##每个得分的置信度区间,用横线表示,横线越长置信度越
                     abbrev = F#是否用简称代表因子变量
                    )
plot(nomogram)
nomo图_副本.png

该图的使用,本质上这是将逻辑回归模型可视化展示,方便临床快速判断。假设有个病人年龄45岁,性别为男,高血压正常,Nomogram用法是在age变量上找到其值为45的刻度,然后画垂线投影到最上方的points刻度尺上,找到找到对应的分值为50分,同理找到sex为1的分值约为37分,ECG为0对应分值为0,将这三个因素的points值加起来总分87。下一步在下面的Total Points刻度尺上找到87,向下方的Risk of Death做垂线,87对应的值在0.4和0.5之间,约为0.48,说明该患者患病风险预测概率值为48%。

利用rms包对该模型进行验证。

##模型验证
##以原数据集为验证集
f.glm <- glm(y~.,data=dt,family = binomial(link = "logit"))
P1 <- predict(f.glm,type = 'response')  ##获得预测概率值
##关键的一步来了。
val.prob(P1,y)     ##这个函数前面放概率值,后面芳结局变量
          Dxy       C (ROC)            R2             D 
 5.675676e-01  7.837838e-01  3.164825e-01  2.578779e-01 
     D:Chi-sq           D:p             U      U:Chi-sq 
 2.111448e+01            NA -2.564103e-02 -3.552714e-13 
          U:p             Q         Brier     Intercept 
 1.000000e+00  2.835189e-01  1.885480e-01 -4.335689e-09 
        Slope          Emax           E90          Eavg 
 9.999998e-01  1.157412e-01  6.085456e-02  3.492462e-02 
          S:z           S:p 
-2.762507e-03  9.977958e-01 
校准曲线.png

该函数可以一次性得到模型验证的多个指标和P值,并绘制出校准曲线,功能很强大了。

首先看代码中返回的结果,Emax是模型与理想模型的最大偏移量,Eavg是模型与理想模型的最小偏移量,这两个值越小越好,越小则说明模型与理想模型越接近。U是指Unreliability test 即U检验,用来判断构建的模型是否能通过校准度检验,其对应的P值在最下面,S:p,当S:p>0.05说明通过校准度检验。C(ROC)是ROC面积,该面积和C-index指数本质上是一样的,只不过一个对应LR,一个对应COX。

通过R计算的结果可看到,本模型通过校准度检验,p=0.998>0.05,Roc面积为0.784具有良好的区分能力,总体来说,该模型的预测能力是很优秀的~~。

总结

本文介绍了Logistic回归模型的深度验证和Nomogram的绘制及应用。需要注意的是:一个预测模型的好坏除了内部验证,还要看外部验证,即它的外推性是否好。本文由于数据量少,也没有获取外部验证集,仅用原始数据集作为训练集和验证集。
以上就是本次跟大家分享的内容,觉得有用的话点赞、转发哦~

更多阅读

如何进行变量筛选和特征选择(三)?交叉验证
如何进行变量筛选和特征选择(二)?最优子集回归
如何进行高维变量筛选和特征选择(一)?Lasso回归

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容