Tobit模型估计方法与应用(一)

内容提要:Tobit模型从最初的结构式模型扩展到时间序列模型、面板数据模型以及非参数模型等形式,无论Tobit模型的结构形式如何变化,现有的估计方法基本上都是在Heckman(1976)两步法的基础上扩展的。本文结合一些经典文献,介绍了不同类型的Tobit模型的结构形式、估计方法、估计结果的性质等,为做实证分析的研究者们提供一个分析此类问题的基本方法。    关键词:Tobit模型 Heckman两步法 面板Tobit模型 Tobit GARCH ARCH模型    作者简介:周华林,中国社会科学院研究生院,电子邮箱:zhimadexin009@163.com 北京 102488;李雪松,中国社会科学院数量经济与技术经济研究所,电子邮箱:xsli@cass.org.cn 北京 100732        一、引言    自从Tobin(1958)研究了被解释变量有上限、下限或者存在极值等问题以来,这类研究受到学者们的广泛关注。人们为了纪念Tobin对这类模型的贡献,把被解释变量取值有限制、存在选择行为的这类模型称之为Tobit模型。这类模型实际上包含两种方程,一种是反映选择问题的离散数据模型;一种是受限制的连续变量模型。第二种模型往往是文献中人们更感兴趣的部分。            Tobit模型不同于离散选择模型和一般的连续变量选择模型,它的特点在于因变量是受限变量,模型实际上由两类方程组成,主要研究在某些选择行为下,连续变量如何变化的问题。当前,这种模型已经引入了更复杂的形式,面板数据、半参数等形式的Tobit模型在研究中广泛应用。国外这种模型已经陆续在各领域内广泛使用,国内也有一些实证分析的论文用到了这种模型。但是人们在应用这些模型分析问题时还存在一些误区,如误认为离散选择模型就是Tobit模型,无法解释样本选择性偏差的经济含义,不区分所建立的模型是否是联立方程,对估计结果的性质不进行检验等。本文所介绍的经典文献,概括了Tobit模型的起源、结构形式、估计方法、适用的研究问题、自身缺陷等方面,这些经典文献中提到的一些细节问题在实证分析中很重要,然而现在已有的教材或者引文并没有摘录出来,可能导致一些作者在实证分析中对该模型有种种误解。    本文试图从一些经典文献著作的简单介绍中,向有兴趣用这个方法分析这类问题的研究者们提供一个参考,为做实证分析的研究者们提供一个分析此类问题的方法。本文的结构安排如下:第二部分介绍Tobit模型的分类与结构,概括了Tobit模型的特点以及其与两部模型的区别,按照不同的特征对Tobit模型进行了分类。第三部分介绍Tobit模型的估计与应用,按照Tobit模型的特征从三个方面介绍了每种模型的估计:一是关于非联立方程的Tobit模型估计;二是关于联立方程的Tobit模型的估计,这两类文献的估计方法主要是针对截面数据或者时间序列数据;三是关于面板Tobit模型的估计。第四部分是简要的结论,指出Tobit模型的发展方向。    二、Tobit模型:概念与分类    Tobit模型也称为样本选择模型、受限因变量模型,是因变量满足某种约束条件下取值的模型。这种模型的特点在于模型包含两个部分,一是表示约束条件的选择方程模型;一种是满足约束条件下的某连续变量方程模型。研究感兴趣的往往是受限制的连续变量方程模型,但是由于因变量受到某种约束条件的制约,忽略某些不可度量(即:不是观测值,而是通过模型计算得到的变量)的因素将导致受限因变量模型产生样本选择性偏差。两部模型(two-part model)与Tobit模型有很大的相似之处,也是研究受限因变量问题的模型;但是这两种模型在模型结构形式、估计方法、假设条件等方面也存在一定的区别。Tobit模型的估计方法与模型结构形式有密切关系,不同类型的模型估计方法存在较大的差异,本文按照三种属性特征对Tobit模型进行了分类。    (一)Tobit模型与两部模型    1.Tobit模型与两部模型的区别。    (1)结构不同。Tobit模型的第一部分表示是否选择的方程是单一条件离散选择模型,两部模型的第一部分表示是否选择的方程是多条件离散选择模型(Cragg, 1971);Tobit模型的第二部分表示选择多少的方程需要考虑样本选择偏差,两部模型的第二部分表示选择多少的方程无需考虑选择性偏差的影响。    以van de Ven & van Praage的调整Tobit Ⅱ模型为焦点的样本选择模型结构如下:        (3)目的不同。两部模型的设计主要是预测实际连续变量值y,以实际观测值为基础计算E(y)=P(y>0)E(y|y>0);而样本选择模型是基于选择方程的P(y>0)预测实际连续变量值y,得到的均值是E(y|y>0)。Duan(1983,1984,1985)等认为基于这个目的,潜变量的结果和非条件方程的参数值不重要,Heckman(1990)指出识别潜变量在经济含义上非常重要。        2.Tobit模型与两部模型的应用。Cragg(1971)是最早使用两部模型的文献,20世纪70年代和80年代早期在健康经济学的实证分析中经常用到两部模型,如:Manning et al(1981、1984、1985),Newhouse et al(1981)等。Dudley & Montmarquette(1976)、Grossman & Joyce(1990)、McLaughlin(1991)等文献虽然没有明确指出他们在研究中使用了两部模型,但是他们的研究都是两部模型在实证分析中的应用。Dudley(1984)指出样本选择模型的内生性缺陷,此后有一些研究用蒙特卡洛方法,试图证明两部模型优于样本选择模型,即使真实的模型是样本选择模型。Free & Sun(2009)用多变量两部模型分析了家庭寿险需求的问题,认为寿险需求多少取决于人们对定期寿险和终身寿险的联合选择的结果。梁兆晖(Leung,1996)用GUASS程序生成了1000个随机样本数据,对每个实验重复100次,对样本选择模型与纯两部模型进行对比。实证分析的结论表明,在不同仿真程序下两种模型的效果都运行得较好,对两种模型应该持一种平等的观点,选用哪种模型部分依赖于人们想识别什么参数和什么结果。样本选择模型估计中使用Heckman两步法时,之间的共线性程度对估计结果可能有一定的影响,半参数模型在识别时需要强加一些外生条件以避免共线性的问题,但是参数方法的识别不需要外生的约束条件。因此Leung(1996)不支持两部模型优于样本选择模型的观点,也不认为样本选择模型优于两部模型,认为两种模型在不同的条件下都可以有好的表现形式。Heckman两步法的适用条件是模型中不存在共线性,此时可采用条件数法(condition number)对模型的共线性问题进行检验。    (二)Tobit模型的分类与结构    Lee(1976)与Amemiya(1984)按照似然函数的特点,对Tobit模型进行了分类,应用中一般是按照Amemiya的分类法对模型进行区分的。    Lee(1976)将受限因变量模型分成五类:简单的受限因变量模型、审查因变量模型、样本可分割的转换回归模型、包含指标内生变量的迭代模型、非市场均衡模型。    Amemiya(1984)根据Tobit模型似然函数的不同将Tobit模型分成五类,第一类模型是标准的Tobit模型,根据数据类型的不同,可建立审查数据模型或者截断数据模型,其余四类模型也称为是广义Tobit模型,适用于样本选择模型,各模型的似然函数如表1所示。    1.第一类Tobit模型。(1)审查数据模型。当因变量被审查时,某一特定范围内的值全部变成一个单一值,下审查(或左审查)数据的一般结构为:    

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容