1.图的定义
图(Graph) 是由顶点的有穷⾮非空集合 和 顶点之间边的集合组成. 通常表示为: G(V,E). 其中,G表示⼀一个图, V是图G中的顶点集合,E 是图G中边的集合.
2.图的存储
在计算机中, 任何逻辑结构的存储, 最终都会化为顺序存储与链式存储. 这里使用顺序存储来进行图的存储.
图的邻接存储方式是用两个数组来表示图, 一个用来存储顶点, 一个用二维数组来存储边或弧的信息, 这个二维数据就称为邻接矩阵.
一个顶点Vi与其他顶点的连接关系的和称之为这个顶点的度
当一个顶点到其他顶点之间是有权值的
顶点有连击关系的用权值存储 若顶点与顶点之间没有连接关系用数据的正无穷表示代表不连接
3.代码实现
typedef int Status; /* Status是函数的类型,其值是函数结果状态代码,如OK等 */
typedef char VertexType; /* 顶点类型应由用户定义 */
typedef int EdgeType; /* 边上的权值类型应由用户定义 */
typedef struct
{
VertexType vexs[MAXVEX]; /* 顶点表 */
EdgeType arc[MAXVEX][MAXVEX];/* 邻接矩阵,可看作边表 */
int numNodes, numEdges; /* 图中当前的顶点数和边数 */
}MGraph;
图的邻接矩阵
void CreateMGraph(MGraph *G){
int i,j,k,w;
printf("输入顶点数和边数:\n");
//1. 输入顶点数/边数
scanf("%d,%d",&G->numNodes,&G->numEdges);
printf("顶点数:%d,边数:%d\n",G->numNodes,G->numEdges);
//2.输入顶点信息/顶点表
for(i = 0; i<= G->numNodes;i++)
scanf("%c",&G->vexs[i]);
//3.初始化邻接矩阵
for(i = 0; i < G->numNodes;i++)
for(j = 0; j < G->numNodes;j++)
G->arc[i][j] = INFINITYC;
//4.输入边表信息
for(k = 0; k < G->numEdges;k++){
printf("输入边(vi,vj)上的下标i,下标j,权w\n");
scanf("%d,%d,%d",&i,&j,&w);
G->arc[i][j] = w;
//如果无向图,矩阵对称;
G->arc[j][i] = G->arc[i][j];
}
/*5.打印邻接矩阵*/
for (int i = 0; i < G->numNodes; i++) {
printf("\n");
for (int j = 0; j < G->numNodes; j++) {
printf("%d ",G->arc[i][j]);
}
}
printf("\n");
}
图邻接表实现
typedef char Element;
typedef int BOOL;
//邻接表的节点
typedef struct Node{
int adj_vex_index; //弧头的下标,也就是被指向的下标
Element data; //权重值
struct Node * next; //边指针
}EdgeNode;
//顶点节点表
typedef struct vNode{
Element data; //顶点的权值
EdgeNode * firstedge; //顶点下一个是谁?
}VertexNode, Adjlist[M];
//总图的一些信息
typedef struct Graph{
Adjlist adjlist; //顶点表
int arc_num; //边的个数
int node_num; //节点个数
BOOL is_directed; //是不是有向图
}Graph, *GraphLink;
void creatGraph(GraphLink *g){
int i,j,k;
EdgeNode *p;
//1. 顶点,边,是否有向
printf("输入顶点数目,边数和有向?:\n");
scanf("%d %d %d", &(*g)->node_num, &(*g)->arc_num, &(*g)->is_directed);
//2.顶点表
printf("输入顶点信息:\n");
for (i = 0; i < (*g)->node_num; i++) {
getchar();
scanf("%c", &(*g)->adjlist[i].data);
(*g)->adjlist[i].firstedge = NULL;
}
//3.
printf("输入边信息:\n");
for (k = 0; k < (*g)->arc_num; k++){
getchar();
scanf("%d %d", &i, &j);
//①新建一个节点
p = (EdgeNode *)malloc(sizeof(EdgeNode));
//②弧头的下标
p->adj_vex_index = j;
//③头插法插进去,插的时候要找到弧尾,那就是顶点数组的下标i
p->next = (*g)->adjlist[i].firstedge;
//④将顶点数组[i].firstedge 设置为p
(*g)->adjlist[i].firstedge = p;
//j->i
if(!(*g)->is_directed)
{
// j -----> i
//①新建一个节点
p = (EdgeNode *)malloc(sizeof(EdgeNode));
//②弧头的下标i
p->adj_vex_index = i;
//③头插法插进去,插的时候要找到弧尾,那就是顶点数组的下标i
p->next = (*g)->adjlist[j].firstedge;
//④将顶点数组[i].firstedge 设置为p
(*g)->adjlist[j].firstedge = p;
}
}
}
4.图的遍历
图的深度遍历 矩阵
- 将图的顶点和边信息输⼊入到图结构中;
- 创建⼀一个visited 数组,⽤用来标识顶点是否已经被遍历过.
- 初始化visited 数组,将数组中元素置为FALSE
- 选择顶点开始遍历.(注意⾮非连通图的情况)
- 进⼊入递归; 打印i 对应的顶点信息. 并将该顶点标识为已遍历.
- 循环遍历边表,判断当前arc[i][j] 是否等于1,并且当前该顶点没有被遍历过,则继续递归 DFS;
/*4.2 DFS遍历*/
Boolean visited[MAXVEX]; /* 访问标志的数组 */
//1. 标识顶点是否被标记过;
//2. 选择从某一个顶点开始(注意:非连通图的情况)
//3. 进入递归,打印i点信息,标识; 边表
//4. [i][j] 是否等于1,没有变遍历过visted
void DFS(MGraph G,int i){
//1.
visited[i] = TRUE;
printf("%c",G.vexs[i]);
//2.0~numVertexes
for(int j = 0; j < G.numVertexes;j++){
if(G.arc[i][j] == 1 && !visited[j])
DFS(G, j);
}
}
void DFSTravese(MGraph G){
//1.初始化
for(int i=0;i<G.numVertexes;i++){
visited[i] = FALSE;
}
//2.某一个顶点
for(int i = 0;i<G.numVertexes;i++){
if(!visited[i]){
DFS(G, i);
}
}
}
图的深度遍历 邻接表
- 利利⽤用邻接矩阵将信息存储到邻接表中
- 创建⼀一个visited 数组,⽤用来标识顶点是否已经被遍历过.
- 初始化visited 数组,将数组中元素置为FALSE
- 选择顶点开始遍历.(注意⾮非连通图的情况)
- 进⼊入递归; 打印i 对应的顶点信息. 并将该顶点标识为已遍历.
- 循环遍历边表,判断当前顶点 是否等于1,并且当前该顶点没有被遍历过,则继续递归 DFS;
/* 邻接表的深度优先递归算法 */
void DFS(GraphAdjList GL, int i)
{
EdgeNode *p;
visited[i] = TRUE;
//2.打印顶点 A
printf("%c ",GL->adjList[i].data);
p = GL->adjList[i].firstedge;
//3.
while (p) {
if(!visited[p->adjvex])
DFS(GL,p->adjvex);
p = p->next;
}
}
/* 邻接表的深度遍历操作 */
void DFSTraverse(GraphAdjList GL)
{
//1. 将访问记录数组默认置为FALSE
for (int i = 0; i < GL->numVertexes; i++) {
/*初始化所有顶点状态都是未访问过的状态*/
visited[i] = FALSE;
}
//2. 选择一个顶点开始DFS遍历. 例如A
for(int i = 0; i < GL->numVertexes; i++)
//对未访问过的顶点调用DFS, 若是连通图则只会执行一次.
if(!visited[i])
DFS(GL, i);
}
图的广度遍历 矩阵
1、把根节点放到队列列的末尾。
2、每次从队列列的头部取出⼀一个元素,查看这个元素所有的下⼀一级元素,把它们放到队
列列的末尾。并把这个元素记为它下⼀一级元素的前驱。
3、找到所要找的元素时结束程序。
4、如果遍历整个树还没有找到,结束程序.
/*
4.2 ***需要用到的队列结构与相关功能函数***
*/
/* 循环队列的顺序存储结构 */
typedef struct
{
int data[MAXSIZE];
int front; /* 头指针 */
int rear; /* 尾指针,若队列不空,指向队列尾元素的下一个位置 */
}Queue;
/* 初始化一个空队列Q */
Status InitQueue(Queue *Q)
{
Q->front=0;
Q->rear=0;
return OK;
}
/* 若队列Q为空队列,则返回TRUE,否则返回FALSE */
Status QueueEmpty(Queue Q)
{
if(Q.front==Q.rear) /* 队列空的标志 */
return TRUE;
else
return FALSE;
}
/* 若队列未满,则插入元素e为Q新的队尾元素 */
Status EnQueue(Queue *Q,int e)
{
if ((Q->rear+1)%MAXSIZE == Q->front) /* 队列满的判断 */
return ERROR;
Q->data[Q->rear]=e; /* 将元素e赋值给队尾 */
Q->rear=(Q->rear+1)%MAXSIZE;/* rear指针向后移一位置, */
/* 若到最后则转到数组头部 */
return OK;
}
/* 若队列不空,则删除Q中队头元素,用e返回其值 */
Status DeQueue(Queue *Q,int *e)
{
if (Q->front == Q->rear) /* 队列空的判断 */
return ERROR;
*e=Q->data[Q->front]; /* 将队头元素赋值给e */
Q->front=(Q->front+1)%MAXSIZE; /* front指针向后移一位置, */
/* 若到最后则转到数组头部 */
return OK;
}
/******** Queue End **************/
/*4.3 邻接矩阵广度优先遍历-代码实现*/
Boolean visited[MAXVEX]; /* 访问标志的数组 */
void BFSTraverse(MGraph G){
int temp = 0;
//1.
Queue Q;
InitQueue(&Q);
//2.将访问标志数组全部置为"未访问状态FALSE"
for (int i = 0 ; i < G.numVertexes; i++) {
visited[i] = FALSE;
}
//3.对遍历邻接表中的每一个顶点(对于连通图只会执行1次,这个循环是针对非连通图)
for (int i = 0 ; i < G.numVertexes; i++) {
if(!visited[i]){
visited[i] = TRUE;
printf("%c ",G.vexs[i]);
//4. 入队
EnQueue(&Q, i);
while (!QueueEmpty(Q)) {
//出队
DeQueue(&Q, &i);
for (int j = 0; j < G.numVertexes; j++) {
if(G.arc[i][j] == 1 && !visited[j])
{ visited[j] = TRUE;
printf("%c ",G.vexs[j]);
EnQueue(&Q, j);
}
}
}
}
}
}
图的广度遍历 邻接表
/*
5.2 ***需要用到的队列结构与相关功能函数***
*/
/* 循环队列的顺序存储结构 */
typedef struct
{
int data[MAXSIZE];
int front; /* 头指针 */
int rear; /* 尾指针,若队列不空,指向队列尾元素的下一个位置 */
}Queue;
/* 初始化一个空队列Q */
Status InitQueue(Queue *Q)
{
Q->front=0;
Q->rear=0;
return OK;
}
/* 若队列Q为空队列,则返回TRUE,否则返回FALSE */
Status QueueEmpty(Queue Q)
{
if(Q.front==Q.rear) /* 队列空的标志 */
return TRUE;
else
return FALSE;
}
/* 若队列未满,则插入元素e为Q新的队尾元素 */
Status EnQueue(Queue *Q,int e)
{
if ((Q->rear+1)%MAXSIZE == Q->front) /* 队列满的判断 */
return ERROR;
Q->data[Q->rear]=e; /* 将元素e赋值给队尾 */
Q->rear=(Q->rear+1)%MAXSIZE;/* rear指针向后移一位置, */
/* 若到最后则转到数组头部 */
return OK;
}
/* 若队列不空,则删除Q中队头元素,用e返回其值 */
Status DeQueue(Queue *Q,int *e)
{
if (Q->front == Q->rear) /* 队列空的判断 */
return ERROR;
*e=Q->data[Q->front]; /* 将队头元素赋值给e */
Q->front=(Q->front+1)%MAXSIZE; /* front指针向后移一位置, */
/* 若到最后则转到数组头部 */
return OK;
}
/* *********************** Queue End ******************************* */
/*5.3 邻接表广度优先遍历*/
Boolean visited[MAXSIZE]; /* 访问标志的数组 */
void BFSTraverse(GraphAdjList GL){
//1.创建结点
EdgeNode *p;
Queue Q;
InitQueue(&Q);
//2.将访问标志数组全部置为"未访问状态FALSE"
for(int i = 0; i < GL->numVertexes; i++)
visited[i] = FALSE;
//3.对遍历邻接表中的每一个顶点(对于连通图只会执行1次,这个循环是针对非连通图)
for(int i = 0 ;i < GL->numVertexes;i++){
//4.判断当前结点是否被访问过.
if(!visited[i]){
visited[i] = TRUE;
//打印顶点
printf("%c ",GL->adjList[i].data);
EnQueue(&Q, i);
while (!QueueEmpty(Q)) {
DeQueue(&Q, &i);
p = GL->adjList[i].firstedge;
while (p) {
//判断
if(!visited[p->adjvex]){
visited[p->adjvex] = TRUE;
printf("%c ",GL->adjList[p->adjvex].data);
EnQueue(&Q, p->adjvex);
}
p = p->next;
}
}
}
}
}