ROC曲线是评判一个模型好坏的标准,有两个值要知道,FPR(假正率)和TPR(真正率),ROC曲线就是以这两个值为坐标轴画的。比如逻辑回归得到的结果是概率,那么就要取阈值来划分正负,这时候,每划一个阈值,就会产生一组FPR和TPR的值,然后把这组值画成坐标轴上的一个点,这样,当选取多组阈值后,就形成了ROC曲线(每次选取一个不同的阈值,我们就可以得到一组FPR和TPR,即ROC曲线上的一点),AUC值就是ROC曲线下方的面积。图中画出的AUC=0.810就是这个模型能得出的最好的AUC值,其对应的阈值也是最好的划分。但是最好的阈值是不能通过这个图知道的,要通过KS曲线得出。
KS曲线的纵轴是表示TPR和FPR的值,就是这两个值可以同时在一个纵轴上体现,横轴就是阈值,,然后在两条曲线分隔最开的地方,对应的就是最好的阈值,也是该模型最好的AUC值,就比如是上图的AUC=0.810,下图中,一条曲线是FPR,一条是TPR
---------------------
作者:yaoqsm
来源:CSDN
原文:https://blog.csdn.net/yaoqsm/article/details/78334920
版权声明:本文为博主原创文章,转载请附上博文链接!