8.1 数据仓库Hive

一、数据仓库概述

1. 概念

数据仓库是一个面向主题的、集成的、相对稳定的、反映历史变化的数据集合
目的:支持商业分析和管理决策

2. 典型结构

包括四个层次:数据源 -> 数据存储和管理 -> 分析和挖掘引擎 -> 应用


3. 特点

(1) 基本不会修改已保存的数据(即相对稳定)

(2) 保留所有历史数据(即可以反映历史变化)

二、Hive概述

1. 本质

Hive本身并不支持数据的存储和处理——它只相当一个面向用户的编程接口,提供了一种类SQL编程语言(HiveQL),而具体的数据存储和处理还是依靠HDFS和MapReduce。
Hive被发明出来的目的是简化使用以及方便传统SQL的移植。

2. 与其他组件的关系

(1) Hive依赖HDFS存储数据
(2) Hive依赖MapReduce处理数据
(3) Hive的ETL环节(数据抽取、转换和加载)常常借助Pig来做
——Pig是类似于Hive的工具,但是比Hive更轻量化,适合做实时交互分析(而非Hive的海量数据批处理)。Pig在ETL环节有优势,所以虽然Hive本身也可以做ETL但通常还是会借助Pig。
(4) Hive高延迟,如果需要实时查询应放弃Hive而使用HBase

在具体应用中,Hive和Pig常用于生成报表,因为报表不需要即时性,可以容忍高延迟。而在线业务等实时性任务应使用HBase等组件。Mahaut集成了许多机器学习算法,常用于数据处理,如商务智能(BI, Business Intellegence)应用的大规模数据挖掘和分析。

3. 与传统数据库对比

对比项目 Hive 传统数据库
数据插入 支持批量导入 支持单条和批量导入
数据更新 不支持 支持
索引 支持 支持
分区 支持 支持
执行延迟
扩展性 有限

三、Hive架构

Hive的三大核心模块:用户接口模块,驱动模块Driver和元数据存储模块Metastore


1. 对外访问接口

Hive提供多种工具来实现访问
(1) CLI
一种命令行工具,可直接输入命令访问Hive
(2) HWI
Hive Web Interface,是Hive的web接口,可通过浏览器访问数据
(3) JDBC和ODBC
是标准化的开放数据库连接接口,支持很多应用的开发
(4) Thrift Server
基于Thrift架构开发的接口,外界可通过此接口实现对Hive仓库的RPC调用(Remote Procedure Call,远程过程调用,允许一台计算机程序远程调用另一台的子程序而不用关系底层网络通讯)

2. 驱动模块Driver

Hive的驱动模块目的就是把HiveQL语句转换成一系列的MapReduce作业。
Driver包含编译器、优化器和执行器。

3. 元数据存储模块Metastore

Metastore专门用于存储数据仓库的元数据。它是一个独立的关系型数据库,具体实现它的产品可以是Hive自带的Derby,也可以是其他的产品如MySQL(注意一定是关系型数据库产品)。

4. 其他访问Hive的产品

其他访问Hive的产品有Karmasphere,Hue,Qubole等。
Qubole提供了数据仓库即服务的功能。它可以把数据仓库部署在亚马逊AWS云计算平台上,而不需要本地部署了。数据仓库的集群管理都有亚马逊的服务器完成。

四、Hive HA

Hive HA即Hive High Availability,高可用性Hive解决方案。它用于解决Hive在实际应用中不稳定的问题。比如端口调用没有响应、进程丢失等。


Hive HA方案的基本思路是:
(0) Hive底层事先会存储大量的多个实例,形成资源池以供访问。
(1) 设置了统一的访问接口HA Proxy——外部并不直接访问底层实例,而是访问HA Proxy,通过它来转发请求。
(2) HA Proxy接到访问请求后,会对底层的实例进行可用性询问,即执行逻辑可用性测试。如果通过测试则把外部请求转发到这个Hive实例上去;如果没通过就把它加入黑名单(因为它不可用),然后测试下一个Hive实例,直到找到可用的实例才转发外部请求。
(3) 每隔一定周期,HA Proxy会统一处理黑名单中的实例。如果重启成功了可用了,就把它放回资源池中。

Reference:
https://www.icourse163.org/learn/XMU-1002335004?tid=1450180443#/learn/content?type=detail&id=1214310160&sm=1

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345