Appendix
https://docs.mongodb.com/manual/core/aggregation-pipeline/
Manual for Pipeline
https://docs.mongodb.com/manual/reference/operator/aggregation/
Usage for bulletin operators
https://github.com/qianjiahao/MongoDB/wiki/MongoDB之索引
Chinese Index Book for mongoDB
Target
Here we Go
Analysis of a record entry, and get design ideas from it.
{'pub_date': '2016.01.13',
'look': '-', 'time': 0,
'price': 260, 'url': 'http://bj.58.com/jiadian/24652878967613x.shtml',
'_id': ObjectId('5698f525a98063dbe6e91ca8'),
'area': ['西城', '西单'], 'title': '【图】很新的海信冰箱 - 西城西单二手家电 - 北京58同城', 'cates': ['北京58同城', '北京二手市场', '北京二手家电', '北京二手冰箱']}
Basic Moves
For both targets, we have to do these basic moves first.
import pymongo
from datetime import date
from datetime import timedelta
import charts
client = pymongo.MongoClient('localhost',27017)
myDB = client['ganjiDB']
myCollection = myDB['bjGanji']
Target1
Split into the following sub-goals:
- Get post counts of each category in one day.
- Sum them up in a time period.
- Sort and find out Top3.
- Draw a histogram.
Coding:
DateDict = {}
for eachDay in date_generate(sDay,3):
p1 = [
{'$match':{'pub_date':eachDay}},
{'$group':{'_id':{'$slice':['$cates',2,1]},'countsPday':{'$sum':1}}},
{'$sort':{'countsPday':-1}}
]
for i in myCollection.aggregate(p1):
if DateDict.get(i['_id'][0]) == None:
DateDict[i['_id'][0]] = i['countsPday']
else:
DateDict[i['_id'][0]] += i['countsPday']
print(DateDict)
newDict = sorted(DateDict.items(), key=lambda d:d[1], reverse = True)
print(newDict)
options = {
'title':{'text':'Top3 category'}
}
series = []
for index in range(0,3):
each = newDict[index]
dat = {
'name':each[0],
'data':[each[1]],
'type':'column'
}
print(dat)
series.append(dat)
charts.plot(series=series, show='inline', options=options)
Target2
pipe1 = [
{'$match':{'$and':[{'pub_date':{'$gte':'2015.12.25','$lte':'2015.12.29'}},
{'cates':{'$all':['北京二手手机']}},
{'look':{'$nin':['-']}}
]}},
{'$group':{'_id':"$look",'avgPrice':{'$avg':"$price"}}},
{'$sort':{'avgPrice':-1}}
]
priceList = [i['avgPrice'] for i in myCollection.aggregate(pipe1) ]
print(priceList)
series = [
{
'name':'北京二手手机',
'data':priceList,
'type':'line'
}
]
options = {
'chart':{'zoomType':'xy'},
'title':{'text':'Line Chart'},
'subtitle':{'text':'made by Jet'},
'xAxis':{'categories':[i['_id'] for i in myCollection.aggregate(pipe1)]},
'yAxis':{'title': {'text': 'AverangePrice'}}
}
charts.plot(series,show='inline',options=options)
Export collection to CSV file
mongoexport -d database -c collection -o output/path.csv
This command is used in your terminal.
mongoexport -d ganjiDB -c bjGanji -o User/aaa.csv
or
mongoexport -d ganjiDB -c bjGanji -o User/bbb.json