假设第1个月有1对刚诞生的兔子,第2个月进入成熟期,第3个月开始生育兔子,而1对成熟的兔子每月会生1对兔子,兔子永不死去……那么,由1对初生兔子开始,12个月后会有多少对兔子呢?
兔子数列即斐波那契数列,它的发明者是意大利数学家列昂纳多•斐波那契(Leonardo Fibonacci,1170—1250)。1202年,他撰写了《算盘全书》(《Liber Abaci》)一书,该书是一部较全面的初等数学著作。书中系统地介绍了印度—阿拉伯数码及其演算法则,介绍了中国的“盈不足术”;引入了负数,并研究了一些简单的一次同余式组。
(1)问题分析
我们不妨拿新出生的1对小兔子分析:
第1个月,小兔子①没有繁殖能力,所以还是1对。
第2个月,小兔子①进入成熟期,仍然是1对。
第3个月,兔子①生了1对小兔子②,于是这个月共有2(1+1=2)对兔子。
第4个月,兔子①又生了1对小兔子③。因此共有3(1+2=3)对兔子。
第5个月,兔子①又生了1对小兔子④,而在第3个月出生的兔子②也生下了1对小兔子⑤。共有5(2+3=5)对兔子。
第6个月,兔子①②③各生下了1对小兔子。新生3对兔子加上原有的5对兔子这个月共有8(3+5=8)对兔子。
……
为了表达得更清楚,我们用图示来分别表示新生兔子、成熟期兔子和生育期兔子,兔子的繁殖过程如图1-10所示。
图1-10 兔子繁殖过程
这个数列有十分明显的特点,从第3个月开始,当月的兔子数=上月兔子数+当月新生兔子数,而当月新生的兔子正好是上上月的兔子数。因此,前面相邻两项之和,构成了后一项,即:
当月的兔子数=上月兔子数+上上月的兔子数
斐波那契数列如下:
1,1,2,3,5,8,13,21,34,…
递归式表达式:
那么我们该怎么设计算法呢?
哈哈,这太简单了,用递归算法很快就算出来了!
(2)算法设计
首先按照递归表达式设计一个递归算法,见算法1-8。
//算法1-8
Fib1(int n)
{ if(n<1)
return -1;
if(n==1||n==2)
return 1;
return Fib1(n-1)+Fib1(n-2);
}
写得不错,那么算法设计完成后,我们有3个问题:
算法是否正确?
算法复杂度如何?
能否改进算法?
(3)算法验证分析
第一个问题毋庸置疑,因为算法1-8是完全按照递推公式写出来的,所以正确性没有问题。那么算法复杂度呢?假设T(n)表示计算Fib1(n)所需要的基本操作次数,那么:
n=1时,T(n)=1;n=2时,T(n)=1;n=3时,T(n)=3;//调用Fib1(2)、Fib1(1)和执行一次加法运算Fib1(2)+Fib1(1)
因此,n>2时要分别调用Fib1(n−1)、Fib1(n−2)和执行一次加法运算,即:
n>2时,T(n)=T(n-1)+T(n-2)+1;
递归表达式和时间复杂度T(n)之间的关系如下:
那么怎么计算F(n)呢?
有兴趣的读者可以看本书附录A中通项公式的求解方法,也可以看下文中的简略解释。
斐波那契数列通项为:
当n趋近于无穷时,
如果我们今年计算出了F(100),那么明年才能算出F(101),多算一个斐波那契数需要一年的时间,爆炸增量函数是算法设计的噩梦!算法1-8的时间复杂度属于爆炸增量函数,这在算法设计时是应当避开的,那么我们能不能改进它呢?
(4)算法改进
既然斐波那契数列中的每一项是前两项之和,如果记录前两项的值,只需要一次加法运算就可以得到当前项,时间复杂度会不会更低一些?我们用数组试试看,见算法1-9。
//算法1-9Fib2(intn){if(n<1)return-1;int*a=newint[n];//定义一个数组a[1]=1;a[2]=1;for(inti=3;i<=n;i++)a[i]=a[i-1]+a[i-2];returna[n];}
很明显,算法1-9的时间复杂度为О(n)。算法仍然是按照F(n)的定义,所以正确性没有问题,而时间复杂度却从算法1-8的指数阶降到了多项式阶,这是算法效率的一个巨大突破!
算法1-9使用了一个辅助数组记录中间结果,空间复杂度也为О(n),其实我们只需要得到第n个斐波那契数,中间结果只是为了下一次使用,根本不需要记录。因此,我们可以采用迭代法进行算法设计,见算法1-10。
//算法1-10Fib3(intn){inti,s1,s2;if(n<1)return-1;if(n==1||n==2)return1;s1=1;s2=1;for(i=3;i<=n;i++){s2=s1+s2;//辗转相加法s1=s2-s1;//记录前一项}returns2;}
迭代过程如下。
初始值:s1=1;s2=1;
当前解 记录前一项
i=3时s2=s1+s2=2s1=s2−s1=1
i=4时s2=s1+s2=3s1=s2−s1=2
i=5时s2=s1+s2=5s1=s2−s1=3
i=6时s2=s1+s2=8s1=s2−s1=5
…… …… ……
算法1-10使用了若干个辅助变量,迭代辗转相加,每次记录前一项,时间复杂度为О(n),但空间复杂度降到了О(1)。
问题的进一步讨论:我们能不能继续降阶,使算法时间复杂度更低呢?实质上,斐波那契数列时间复杂度还可以降到对数阶О(logn),有兴趣的读者可以查阅相关资料。想想看,我们把一个算法从指数阶降到多项式阶,再降到对数阶,这是一件多么振奋人心的事!
(5)惊人大发现
科学家经研究在植物的叶、枝、茎等排列中发现了斐波那契数!例如,在树木的枝干上选一片叶子,记其为数1,然后依序点数叶子(假定没有折损),直到到达与那片叶子正对的位置,则其间的叶子数多半是斐波那契数。叶子从一个位置到达下一个正对的位置称为一个循回。叶子在一个循回中旋转的圈数也是斐波那契数。在一个循回中,叶子数与叶子旋转圈数的比称为叶序(源自希腊词,意即叶子的排列)比。多数植物的叶序比呈现为斐波那契数的比,例如,蓟的头部具有13条顺时针旋转和21条逆时针旋转的斐波那契螺旋,向日葵的种子的圈数与子数、菠萝的外部排列同样有着这样的特性,如图1-11所示。
图1-11 斐波那契螺旋(图片来自网络)
观察延龄草、野玫瑰、南美血根草、大波斯菊、金凤花、耧斗菜、百合花、蝴蝶花的花瓣,可以发现它们的花瓣数目为斐波那契数:3,5,8,13,21,…。如图1-12所示。
图1-12 植物花瓣(图片来自网络)
树木在生长过程中往往需要一段“休息”时间,供自身生长,而后才能萌发新枝。所以,一株树苗在一段间隔(例如一年)以后长出一条新枝;第二年新枝“休息”,老枝依旧萌发;此后,老枝与“休息”过一年的枝同时萌发,当年生的新枝则次年“休息”。这样,一株树木各个年份的枝桠数便构成斐波那契数列,这个规律就是生物学上著名的“鲁德维格定律”。
这些植物懂得斐波那契数列吗?应该并非如此,它们只是按照自然的规律才进化成这样的。这似乎是植物排列种子的“优化方式”,它能使所有种子具有相近的大小却又疏密得当,不至于在圆心处挤太多的种子而在圆周处却又很稀疏。叶子的生长方式也是如此,对于许多植物来说,每片叶子从中轴附近生长出来,为了在生长的过程中一直都能最佳地利用空间(要考虑到叶子是一片一片逐渐地生长出来,而不是一下子同时出现的),每片叶子和前一片叶子之间的角度应该是222.5°,这个角度称为“黄金角度”,因为它和整个圆周360°之比是黄金分割数0.618的倒数,而这种生长方式就导致了斐波那契螺旋的产生。向日葵的种子排列形成的斐波那契螺旋有时能达到89,甚至144。1992年,两位法国科学家通过对花瓣形成过程的计算机仿真实验,证实了在系统保持最低能量的状态下,花朵会以斐波那契数列的规律长出花瓣。
有趣的是:这样一个完全是自然数的数列,通项公式却是用无理数来表达的。而且当n趋向于无穷大时,斐波那契数列前一项与后一项的比值越来越逼近黄金分割比0.618:1÷1 = 1,1÷2 = 0.5,2÷3 = 0.666,…,3÷5 = 0.6,5÷8 = 0.625,…,55÷89 = 0.617977,…,144÷233 = 0.618025,…,46368÷75025 = 0.6180339886……
越到后面,这些比值越接近黄金分割比:
斐波那契数列起源于兔子数列,这个现实中的例子让我们真切地感到数学源于生活,生活中我们需要不断地通过现象发现数学问题,而不是为了学习而学习。学习的目的是满足对世界的好奇心,如果我们怀着这样一颗好奇心,或许世界会因你而不同!斐波那契通过兔子繁殖来告诉我们这种数学问题的本质,随着数列项的增加,前一项与后一项之比越来越逼近黄金分割的数值0.618时,我彻底被震惊到了,因为数学可以表达美,这是令我们叹为观止的地方。当数学创造了更多的奇迹时,我们会发现数学本质上是可以回归到自然的,这样的事例让我们感受到数学的美,就像黄金分割、斐波那契数列,如同大自然中的一朵朵小花,散发着智慧的芳香……