原创文章,转载请注明原作地址:http://www.jianshu.com/p/0858f9d6a6c2
在讨论布隆过滤器在HBase中的应用之前,先介绍一下HBase的块索引机制。块索引是HBase固有的一个特性,因为HBase的底层数据是存储在HFile中的,而每个HFile中存储的是有序的<key, value>键值对,HFile文件内部由连续的块组成[1],每个块中存储的第一行数据的行键组成了这个文件的块索引,这些块索引信息存储在文件尾部。当HBase打开一个HFile时,块索引信息会优先加载到内存;HBase首先在内存的块索引中进行二分查找,确定可能包含给定键的块,然后读取磁盘块找到实际想要的键。
但实际应用中,仅仅只有块索引满足不了需求,这是因为,块索引能帮助我们更快地在一个文件中找到想要的数据,但是我们可能依然需要扫描很多文件。而布隆过滤器就是为解决这个问题而生。因为布隆过滤器的作用是,用户可以立即判断一个文件是否包含特定的行键,从而帮我们过滤掉一些不需要扫描的文件。如下图所示,块索引显示每个文件中都可能包含对应的行键,而布隆过滤器能帮我们跳过一些明显不包含对应行键的文件。
如上图所示,布隆过滤器不能明确指出哪一个文件一定包含所查找的行键,布隆过滤器的结果有误差存在。当布隆过滤器判断文件中不包含对应的行时,这个答案是绝对正确的;但是,当布隆过滤器判断得到文件中包含对应行时,这个答案却有可能是错的。也就是说,HBase还是有可能加载了不必要的块。尽管如此,布隆过滤器还是可以帮助我们跳过一些明显不需要扫描的文件。另外,错误率可以通过调整布隆过滤器所占空间的大小来调整,通常设置错误率为1%。
需要注意的是,使用布隆过滤器,并不一定能立即提升个别的get操作性能,因为同一时间可能有多个客户端向HBase发送请求,当负载过大时,HBase的性能受限于读磁盘的效率。但是,使用了布隆过滤器之后,可以减少不必要的块加载,从而可以提高整个集群的吞吐率。并且,因为HBase加载的块数量少了,缓存波动也降低了,进而提高了读缓存的命中率。
然而,相比与布隆过滤器的优点,它的缺点显得如此微不足道,就是需要占用少量的存储空间。
在使用布隆过滤器时,需要注意两个问题:
什么时候应该使用布隆过滤器?根据上面的描述,布隆过滤器的主要作用,是帮助HBase跳过那些显然不包括所查找数据的底层文件。那么,当所查找的数据均匀分布在所有文件中(当用户定期更新所有行时,就可能导致这种情况),布隆过滤器的作用就微乎其微,反而浪费了存储空间。相反,如果我们查找的数据只包含在少部分的文件中,就应该果断使用布隆过滤器。
应该选择行级还是行加列级布隆过滤器?很显然,行加列级因为粒度更细,占用的存储空间也就越多。因此,如果用户总是读取整行的数据,行级布隆过滤器就够用了。在可以选择的情形下,尽可能使用行级布隆过滤器,因为它在额外的空间开销和利用过滤存储文件提升性能之间取得了更好的平衡。
注[1]: 注意这里的块不是HDFS的块,HBase块的默认大小是64KB。可以根据需要配置不同的大小,对于顺序访问较多的表,建议使用较大的块;随机访问较多的表,建议使用较小的块。
参考资料:《HBase权威指南》