源自斯坦福CS229,机器学习备忘录在集结

姓名:刘成龙  学号:16020199016

转载自:https://www.jiqizhixin.com/articles/2018-08-22-7,有删节。

【嵌牛导读】:机器学习的有用干货

【嵌牛鼻子】:机器学习

【嵌牛提问】:你的机器学习备忘录充实吗?

【嵌牛正文】:

据项目介绍,该 repository 旨在总结斯坦福 CS 229 机器学习课程的所有重要概念,包括:

学习该课程所需的重要预备知识,例如概率与统计、代数与微积分等进修课程。

对每个机器学习领域知识的备忘录,以及在训练模型时需要的提示与技巧。

上面所有的元素最终汇编进来一个备忘录里。

VIP Cheatsheets

在这一部分中,该项目根据 CS 229 提供了监督学习、无监督学习、深度学习、机器学习技巧等重点内容。其中监督学习主要介绍了回归、分类和生成,无监督主要介绍了聚类与降维算法,深度学习概述了三种神经网络。

监督学习

如下所示监督学习介绍了非常多基础概念,包括损失函数、梯度下降和最大似然估计等。其中损失函数展示了常用的最小二乘损失函数、折页损失函数和交叉熵损失函数等,每一种损失函数的图像、定义和应用的算法都展示在其中。

监督学习部分一共有四页备忘录,除了一般的线性与 Logistic 回归,还重点介绍了 SVM、朴素贝叶斯和 K 近邻等其它一些非参模型。这些基本上都是直接给出的定义,因此不会有过多的冗余信息,这对于机器学习开发者与研究者作为参考还是非常有帮助的。

除了标准的定义外,很多重点概念还会用形象的图示表达出来,如下展示了监督学习中的支持向量机:

上述定义清楚地描述了 SVM 的定义,它希望能根据「支持向量」最大化分类边界之间的间隔,这样的分类模型将更稳定。基本上着一幅图就讲述了 SVM 的基本想法,同时也展现了分类原理,根据它再「回忆起」合页损失函数也就更容易了。

无监督学习

无监督学习主要记录了 EM 算法、聚类算法和降维算法等,其中聚类又详细介绍了 K 均值聚类、层级聚类和其他聚类距离度量方法等,而降维算法则主要展示了主成分分析法和独立成分分析法这两种。

除了标准的定义,这些算法的原理图也非常重要,如上所示在 K 均值聚类中,四幅图展示了该算法的具体过程。首先随机初始化均值,然后将离均值近的样本分配为均值所代表的那一类,随后根据误差更新均值的位置,并直到模型收敛。主成分分析同样有非常好的可视化,如下 PCA 会先归一化数据特征,然后根据奇异值分解找出主成分,最后再将所有数据映射到主成分而实现降维。

深度学习

很多读者已经比较了解深度学习了,尤其是全连接网络、卷积网络和循环网络。这一份备忘录同样也展示了这三种网络重要的概念与定义,且同时描述了强化学习的一些基本概念,如马尔可夫决策过程、贝尔曼方程价值迭代算法和 Q 学习等。

我们认为在图 CNN 中,非常重要的是计算输出特征图大小的公式,即 N = (W-F+2P)/S + 1。其中 W 表示输入特征图的长宽,F 表示卷积核大小,P 表示在每一端填补零值的数量,S 表示卷积步幅,因此计算出来的 N 就表示输出特征图的尺寸。这对于设计卷积网络非常重要,我们经常需要该公式控制网络中间的特征图大小。

机器学习技巧

这一份备忘录从分类、回归、模型选择和模型诊断出发展示了 ML 中的一些技巧。其中分类与回归主要从度量方法的角度探讨,也就是说到底什么样的方法才能确定模型的好坏,以及它们的特定属性。同样模型选择与诊断也都希望判断模型的好坏,只不过一个是从交叉验证与正则化的角度考虑,另一个是从偏差与方差的角度考虑。

VIP Refreshers

这一部分作者提供了进修课程的备忘录,包括对概率与统计、代数与微积分的介绍。

概率与统计

从排列与组合开始,这一部分介绍了概率与统计的概念定义。包括条件概率、贝叶斯法则、概率密度函数、概率分布函数与随机变量的均值和方差等。后面的统计也展示了非常多的定义与规则,包括分布的 K 阶矩、常见的离散型与连续型随机变量分布,以及样本均值、方差、协方差等数据特征。

最后,该备忘录同样记录了参数估计,这对于机器学习来说是最为关键的概念之一,因为本质上机器学习就是需要通过大量样本对模型的参数进行估计,或者称为「学习」。此外,之所以高斯分布如此重要,最后面的中心极限定理可以给我们答案。也就是说,如果采样 n 个服从独立同分布的样本,那么当 n 趋近于无穷大的时候,这个未知的分布一定是接近于高斯分布的。

线性代数与微积分

矩阵运算与微分在实际搭建模型时非常重要,因为不论是传统的机器学习还是深度学习,我们实际都是使用矩阵甚至是张量进行运算,了解它们的法则才能理解模型的实际过程。在这一份备忘录中,作者描述了向量与矩阵的定义、各种常见矩阵运算的定义,以及大量的矩阵概念,例如矩阵的迹、矩阵的逆、矩阵的秩、矩阵的正定和特征值与特征向量等。

矩阵微分的基本概念也展示在上面,因为我们在根据反向传播更新参数时,基本使用的都是矩阵微分。这也就需要我们了解 Jacobian 矩阵和 Hessian 矩阵。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,980评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,178评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,868评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,498评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,492评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,521评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,910评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,569评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,793评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,559评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,639评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,342评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,931评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,904评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,144评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,833评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,350评论 2 342

推荐阅读更多精彩内容