机器学习笔记5-k-means和k-medoids

简单对比一下这两者的区别。两者的主要区别主要在质心的选择中,k-means是样本点均值,k-medoids则是从样本点中选取。

首先给出两者的算法实现步骤:

K-means

  1. 随机选取K个质心的值
  2. 计算各个点到质心的距离
  3. 将点的类划分为离他最近的质心,形成K个cluster
  4. 根据分类好的cluster,在每个cluster内重新计算质心(平均每个点的值)
  5. 重复迭代2-4步直到满足迭代次数或误差小于指定的值

K-medoids

  1. 随机选取K个质心的值 (质心必须是某些样本点的值,而不是任意值)
  2. 计算各个点到质心的距离
  3. 将点的类划分为离他最近的质心,形成K个cluster
  4. 根据分类好的cluster,在每个cluster内重新计算质心:
    4.1 计算cluster内所有样本点到其中一个样本点的曼哈顿距离和(绝对误差)
    4.2 选出使cluster绝对误差最小的样本点作为质心
  5. 重复迭代2-4步直到满足迭代次数或误差小于指定的值

以上就可以看出两者之间的区别:

k-means的质心是各个样本点的平均,可能是样本点中不存在的点。
k-medoids的质心一定是某个样本点的值。


这个不同使他们具有不同的优缺点

  1. k-medoids的运行速度较慢,计算质心的步骤时间复杂度是O(n^2),因为他必须计算任意两点之间的距离。而k-means只需平均即可。
    2、k-medoids对噪声鲁棒性比较好。例:当一个cluster样本点只有少数几个,如(1,1)(1,2)(2,1)(100,100)。其中(100,100)是噪声。如果按照k-means质心大致会处在(1,1)(100,100)中间,这显然不是我们想要的。这时k-medoids就可以避免这种情况,他会在(1,1)(1,2)(2,1)(100,100)中选出一个样本点使cluster的绝对误差最小,计算可知一定会在前三个点中选取。

参考

https://blog.csdn.net/databatman/article/details/50445561

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342

推荐阅读更多精彩内容