es使用与原理5 -- 中文分词及热更新词库,聚合分析等等

中国人很喜欢吃油条的中英文分词器两种分法

standard:中 国 人 很 喜 欢 吃 油 条
ik:中国人 很 喜欢 吃 油条

1、在elasticsearch中安装ik中文分词器

(1)git clone https://github.com/medcl/elasticsearch-analysis-ik
(2)git checkout tags/v5.2.0
(3)mvn package
(4)将target/releases/elasticsearch-analysis-ik-5.2.0.zip拷贝到es/plugins/ik目录下
(5)在es/plugins/ik下对elasticsearch-analysis-ik-5.2.0.zip进行解压缩
(6)重启es
2、ik分词器的两种分词策略(一般使用 ik_max_word策略)
ik_max_word: 会将文本做最细粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,中华人民,中华,华人,人民共和国,人民,人,民,共和国,共和,和,国国,国歌”,会穷尽各种可能的组合;

ik_smart: 会做最粗粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,国歌”。


PUT /my_index 
{
  "mappings": {
    "my_type": {
      "properties": {
        "text": {
          "type": "text",
          "analyzer": "ik_max_word"
        }
      }
    }
  }
}

POST /my_index/my_type/_bulk
{ "index": { "_id": "1"} }
{ "text": "男子偷上万元发红包求交女友 被抓获时仍然单身" }
{ "index": { "_id": "2"} }
{ "text": "16岁少女为结婚“变”22岁 7年后想离婚被法院拒绝" }
{ "index": { "_id": "3"} }
{ "text": "深圳女孩骑车逆行撞奔驰 遭索赔被吓哭(图)" }
{ "index": { "_id": "4"} }
{ "text": "女人对护肤品比对男票好?网友神怼" }
{ "index": { "_id": "5"} }
{ "text": "为什么国内的街道招牌用的都是红黄配?" }

GET /my_index/_analyze
{
  "text": "男子偷上万元发红包求交女友 被抓获时仍然单身",
  "analyzer": "ik_max_word"
}

GET /my_index/my_type/_search 
{
  "query": {
    "match": {
      "text": "16岁少女结婚好还是单身好?"
    }
  }
}
IK分词器配置文件及自定义词库

1、ik配置文件

ik配置文件地址:es/plugins/ik/config目录

IKAnalyzer.cfg.xml:用来配置自定义词库
main.dic:ik原生内置的中文词库,总共有27万多条,只要是这些单词,都会被分在一起
quantifier.dic:放了一些单位相关的词
suffix.dic:放了一些后缀
surname.dic:中国的姓氏
stopword.dic:英文停用词

ik原生最重要的两个配置文件

main.dic:包含了原生的中文词语,会按照这个里面的词语去分词
stopword.dic:包含了英文的停用词
停用词,stopword

a the and at but ,一般,像停用词,会在分词的时候,直接被干掉,不会建立在倒排索引中
2、自定义词库

(1)自己建立词库:每年都会涌现一些特殊的流行词,网红,蓝瘦香菇,喊麦,鬼畜,一般不会在ik的原生词典里

自己补充自己的最新的词语,到ik的词库里面去

IKAnalyzer.cfg.xml:ext_dict,custom/mydict.dic

补充自己的词语,然后需要重启es,才能生效

(2)自己建立停用词库:比如了,的,啥,么,我们可能并不想去建立索引,让人家搜索

custom/ext_stopword.dic,已经有了常用的中文停用词,可以补充自己的停用词,然后重启es

修改IK分词器源码来基于mysql热更新词库

每次都是在es的扩展词典中,手动添加新词语,很坑
(1)每次添加完,都要重启es才能生效,非常麻烦
(2)es是分布式的,可能有数百个节点,你不能每次都一个一个节点上面去修改

es不停机,直接我们在外部某个地方添加新的词语,es中立即热加载到这些新词语

两种热更新的方案
(1)修改ik分词器源码,然后手动支持从mysql中每隔一定时间,自动加载新的词库
(2)基于ik分词器原生支持的热更新方案,部署一个web服务器,提供一个http接口,通过modified和tag两个http响应头,来提供词语的热更新

一般都用第一种方案,第二种 ik git社区官方都不建议采用,觉得不太稳定

2、修改源码

Dictionary类,169行:Dictionary单例类的初始化方法,在这里需要创建一个我们自定义的线程,并且启动它 new Thread(new HotDictReloadThread()).start();
HotDictReloadThread类:就是死循环,不断调用Dictionary.getSingleton().reLoadMainDict(),去重新加载词典 loadMainDict
Dictionary类,389行:this.loadMySQLExtDict();
Dictionary类,683行:this.loadMySQLStopwordDict();

3、mvn package打包代码

target\releases\elasticsearch-analysis-ik-5.2.0.zip

4、解压缩ik压缩包

将mysql驱动jar,放入ik的目录下

5、修改jdbc相关配置

6、重启es

观察日志,日志中就会显示我们打印的那些东西,比如加载了什么配置,加载了什么词语,什么停用词

7、在mysql中添加词库与停用词

8、分词实验,验证热更新生效

聚合分析之bucket和metric

bucket:按照某个字段进行bucket划分,那个字段的值相同的那些数据,就会被划分到一个bucket中。如:
北京 小李
北京 小王
上海 小张
上海 小丽
上海 小陈
基于city划分buckets 划分出来两个bucket,一个是北京bucket,一个是上海bucket
北京bucket:包含了2个人,小李,小王
上海bucket:包含了3个人,小张,小丽,小陈
metric:对一个数据分组执行的统计。当我们有了一堆bucket之后,就可以对每个bucket中的数据进行聚合分词了,比如说计算一个bucket内所有数据的数量,或者计算一个bucket内所有数据的平均值,最大值,最小值
聚合统计--哪种颜色电视销量最高

PUT /tvs
{
    "mappings": {
        "sales": {
            "properties": {
                "price": {
                    "type": "long"
                },
                "color": {
                    "type": "keyword"
                },
                "brand": {
                    "type": "keyword"
                },
                "sold_date": {
                    "type": "date"
                }
            }
        }
    }
}

POST /tvs/sales/_bulk
{ "index": {}}
{ "price" : 1000, "color" : "红色", "brand" : "长虹", "sold_date" : "2016-10-28" }
{ "index": {}}
{ "price" : 2000, "color" : "红色", "brand" : "长虹", "sold_date" : "2016-11-05" }
{ "index": {}}
{ "price" : 3000, "color" : "绿色", "brand" : "小米", "sold_date" : "2016-05-18" }
{ "index": {}}
{ "price" : 1500, "color" : "蓝色", "brand" : "TCL", "sold_date" : "2016-07-02" }
{ "index": {}}
{ "price" : 1200, "color" : "绿色", "brand" : "TCL", "sold_date" : "2016-08-19" }
{ "index": {}}
{ "price" : 2000, "color" : "红色", "brand" : "长虹", "sold_date" : "2016-11-05" }
{ "index": {}}
{ "price" : 8000, "color" : "红色", "brand" : "三星", "sold_date" : "2017-01-01" }
{ "index": {}}
{ "price" : 2500, "color" : "蓝色", "brand" : "小米", "sold_date" : "2017-02-12" }

2、统计哪种颜色的电视销量最高

GET /tvs/sales/_search
{
    "size" : 0,
    "aggs" : { 
        "popular_colors" : { 
            "terms" : { 
              "field" : "color"
            }
        }
    }
}

# 请求参数解释
size:只获取聚合结果,而不要执行聚合的原始数据
aggs:固定语法,要对一份数据执行分组聚合操作
popular_colors:就是对每个aggs,都要起一个名字,这个名字是随机的,你随便取什么都ok
terms:根据字段的值进行分组
field:根据指定的字段的值进行分组

//返回结果
{
  "took": 22,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 8,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "popular_colors": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "红色",
          "doc_count": 4
        },
        {
          "key": "绿色",
          "doc_count": 2
        },
        {
          "key": "蓝色",
          "doc_count": 2
        }
      ]
    }
  }
}
# 返回数据解释:
hits.hits:我们指定了size是0,所以hits.hits就是空的,否则会把执行聚合的那些原始数据给你返回回来
aggregations:聚合结果
popular_color:我们指定的某个聚合的名称
buckets:根据我们指定的field划分出的buckets
key:每个bucket对应的那个值
doc_count:这个bucket分组内,有多少个数据
数量,其实就是这种颜色的销量

默认的排序规则:按照doc_count降序排序

聚合统计--bucket+metric:统计每种颜色电视平均价格
在之前的terms同级下,新增一个aggs分组之后,聚合求平均

GET /tvs/sales/_search
{
   "size" : 0,
   "aggs": {
      "colors": {
         "terms": {
            "field": "color"
         },
         "aggs": { 
            "avg_price": { 
               "avg": {
                  "field": "price" 
               }
            }
         }
      }
   }
}

# 返回数据
{
  "took": 14,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 8,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "colors": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "红色",
          "doc_count": 4,
          "avg_price": {
            "value": 3250
          }
        },
        {
          "key": "绿色",
          "doc_count": 2,
          "avg_price": {
            "value": 2100
          }
        },
        {
          "key": "蓝色",
          "doc_count": 2,
          "avg_price": {
            "value": 2000
          }
        }
      ]
    }
  }
}
# 返回数据解释
buckets,除了key和doc_count
avg_price:我们自己取的metric aggs的名字
value:我们的metric计算的结果,每个bucket中的数据的price字段求平均值后的结果

select avg(price) from tvs.sales group by color

bucket嵌套实现颜色+品牌的多层下钻分析
比如说,现在红色的电视有4台,同时这4台电视中,有3台是属于长虹的,1台是属于小米的
红色电视中的3台长虹的平均价格是多少?
红色电视中的1台小米的平均价格是多少?

下钻的意思是,已经分了一个组了,比如说颜色的分组,然后还要继续对这个分组内的数据,再分组,比如一个颜色内,还可以分成多个不同的品牌的组,最后对每个最小粒度的分组执行聚合分析操作,这就叫做下钻分析

GET /tvs/sales/_search
{
  "size": 0,
  "aggs": { 
      "颜色分组":{
        "terms": {
          "field": "color" 
        },
        "aggs": {
          "颜色求平均": {
            "avg": {
              "field": "price"
            }
          },
          "品牌分组":{
            "terms": {
              "field": "brand"
            },
            "aggs": {
              "品牌求平均": {
                "avg": {
                  "field": "price"
                }
              }
            }
          }
        }
      }
  }
}

//返回数据
{
  "took": 2,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 8,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "颜色分组": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "红色",
          "doc_count": 4,
          "品牌分组": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "长虹",
                "doc_count": 3,
                "品牌求平均": {
                  "value": 1666.6666666666667
                }
              },
              {
                "key": "三星",
                "doc_count": 1,
                "品牌求平均": {
                  "value": 8000
                }
              }
            ]
          },
          "颜色求平均": {
            "value": 3250
          }
        },
        {
          "key": "绿色",
          "doc_count": 2,
          "品牌分组": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "TCL",
                "doc_count": 1,
                "品牌求平均": {
                  "value": 1200
                }
              },
              {
                "key": "小米",
                "doc_count": 1,
                "品牌求平均": {
                  "value": 3000
                }
              }
            ]
          },
          "颜色求平均": {
            "value": 2100
          }
        },
        {
          "key": "蓝色",
          "doc_count": 2,
          "品牌分组": {
            "doc_count_error_upper_bound": 0,
            "sum_other_doc_count": 0,
            "buckets": [
              {
                "key": "TCL",
                "doc_count": 1,
                "品牌求平均": {
                  "value": 1500
                }
              },
              {
                "key": "小米",
                "doc_count": 1,
                "品牌求平均": {
                  "value": 2500
                }
              }
            ]
          },
          "颜色求平均": {
            "value": 2000
          }
        }
      ]
    }
  }
}

metrics:统计每种颜色电视最大最小价格
之前我们也可以求数量和平均值
count:bucket,terms,自动就会有一个doc_count,就相当于是count
avg:avg aggs,求平均值

现在我们使用更多的metrics操作
max:求一个bucket内,指定field值最大的那个数据
min:求一个bucket内,指定field值最小的那个数据
sum:求一个bucket内,指定field值的总和
一般来说,90%的常见的数据分析的操作,metric,无非就是count,avg,max,min,sum

GET /tvs/sales/_search
{
   "size" : 0,
   "aggs": {
      "colors": {
         "terms": {
            "field": "color"
         },
         "aggs": {
            "avg_price": { "avg": { "field": "price" } },
            "min_price" : { "min": { "field": "price"} }, 
            "max_price" : { "max": { "field": "price"} },
            "sum_price" : { "sum": { "field": "price" } } 
         }
      }
   }
}

//返回数据
{
  "took": 5,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 8,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "colors": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "红色",
          "doc_count": 4,
          "max_price": {
            "value": 8000
          },
          "min_price": {
            "value": 1000
          },
          "avg_price": {
            "value": 3250
          },
          "sum_price": {
            "value": 13000
          }
        },
        {
          "key": "绿色",
          "doc_count": 2,
          "max_price": {
            "value": 3000
          },
          "min_price": {
            "value": 1200
          },
          "avg_price": {
            "value": 2100
          },
          "sum_price": {
            "value": 4200
          }
        },
        {
          "key": "蓝色",
          "doc_count": 2,
          "max_price": {
            "value": 2500
          },
          "min_price": {
            "value": 1500
          },
          "avg_price": {
            "value": 2000
          },
          "sum_price": {
            "value": 4000
          }
        }
      ]
    }
  }
}

hitogram按价格区间统计电视销量和销售额
histogram:类似于terms,也是进行bucket分组操作,接收一个field,按照这个field的值的各个范围区间,进行bucket分组操作
interval:2000,划分范围,02000,20004000,40006000,60008000,8000~10000,buckets
去根据price的值,比如2500,看落在哪个区间内,比如20004000,此时就会将这条数据放入20004000对应的那个bucket中
bucket划分的方法,terms,将field值相同的数据划分到一个bucket中
bucket有了之后,一样的,去对每个bucket执行avg,count,sum,max,min,等各种metric操作,聚合分析

以2000位区间段,求各个区间的产品价格总和

GET /tvs/sales/_search
{
   "size" : 0,
   "aggs":{
      "price":{
         "histogram":{ 
            "field": "price",
            "interval": 2000
         },
         "aggs":{
            "revenue": {
               "sum": { 
                 "field" : "price"
               }
             }
         }
      }
   }
}

//返回数据
{
  "took": 6,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 8,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "price": {
      "buckets": [
        {
          "key": 0,
          "doc_count": 3,
          "revenue": {
            "value": 3700
          }
        },
        {
          "key": 2000,
          "doc_count": 4,
          "revenue": {
            "value": 9500
          }
        },
        {
          "key": 4000,
          "doc_count": 0,
          "revenue": {
            "value": 0
          }
        },
        {
          "key": 6000,
          "doc_count": 0,
          "revenue": {
            "value": 0
          }
        },
        {
          "key": 8000,
          "doc_count": 1,
          "revenue": {
            "value": 8000
          }
        }
      ]
    }
  }
}

日期间隔举例

GET /tvs/sales/_search
{
   "size" : 0,
   "aggs": {
      "sales": {
         "date_histogram": {
            "field": "sold_date",
            "interval": "month", 
            "format": "yyyy-MM-dd",
            "min_doc_count" : 0, 
            "extended_bounds" : { 
                "min" : "2016-01-01",
                "max" : "2017-12-31"
            }
         }
      }
   }
}
# 参数解释
min_doc_count:即使某个日期interval,2017-01-01~2017-01-31中,一条数据都没有,那么这个区间也是要返回的,不然默认是会过滤掉这个区间的
extended_bounds,min,max:划分bucket的时候,会限定在这个起始日期,和截止日期内

//返回数据
{
  "took": 10,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 8,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "sales": {
      "buckets": [
        {
          "key_as_string": "2016-01-01",
          "key": 1451606400000,
          "doc_count": 0
        },
        {
          "key_as_string": "2016-02-01",
          "key": 1454284800000,
          "doc_count": 0
        },
        {
          "key_as_string": "2016-03-01",
          "key": 1456790400000,
          "doc_count": 0
        },
        {
          "key_as_string": "2016-04-01",
          "key": 1459468800000,
          "doc_count": 0
        },
        {
          "key_as_string": "2016-05-01",
          "key": 1462060800000,
          "doc_count": 1
        },
        {
          "key_as_string": "2016-06-01",
          "key": 1464739200000,
          "doc_count": 0
        },
        {
          "key_as_string": "2016-07-01",
          "key": 1467331200000,
          "doc_count": 1
        },
        {
          "key_as_string": "2016-08-01",
          "key": 1470009600000,
          "doc_count": 1
        },
        {
          "key_as_string": "2016-09-01",
          "key": 1472688000000,
          "doc_count": 0
        },
        {
          "key_as_string": "2016-10-01",
          "key": 1475280000000,
          "doc_count": 1
        },
        {
          "key_as_string": "2016-11-01",
          "key": 1477958400000,
          "doc_count": 2
        },
        {
          "key_as_string": "2016-12-01",
          "key": 1480550400000,
          "doc_count": 0
        },
        {
          "key_as_string": "2017-01-01",
          "key": 1483228800000,
          "doc_count": 1
        },
        {
          "key_as_string": "2017-02-01",
          "key": 1485907200000,
          "doc_count": 1
        },
        {
          "key_as_string": "2017-03-01",
          "key": 1488326400000,
          "doc_count": 0
        },
        {
          "key_as_string": "2017-04-01",
          "key": 1491004800000,
          "doc_count": 0
        },
        {
          "key_as_string": "2017-05-01",
          "key": 1493596800000,
          "doc_count": 0
        },
        {
          "key_as_string": "2017-06-01",
          "key": 1496275200000,
          "doc_count": 0
        },
        {
          "key_as_string": "2017-07-01",
          "key": 1498867200000,
          "doc_count": 0
        },
        {
          "key_as_string": "2017-08-01",
          "key": 1501545600000,
          "doc_count": 0
        },
        {
          "key_as_string": "2017-09-01",
          "key": 1504224000000,
          "doc_count": 0
        },
        {
          "key_as_string": "2017-10-01",
          "key": 1506816000000,
          "doc_count": 0
        },
        {
          "key_as_string": "2017-11-01",
          "key": 1509494400000,
          "doc_count": 0
        },
        {
          "key_as_string": "2017-12-01",
          "key": 1512086400000,
          "doc_count": 0
        }
      ]
    }
  }
}
下钻分析之统计每季度每个品牌的销售额

其实就是先分组再下钻聚合

GET /tvs/sales/_search 
{
  "size": 0,
  "aggs": {
    "group_by_sold_date": {
      "date_histogram": {
        "field": "sold_date",
        "interval": "quarter",//quarter是季度的意思,这里是按照季度去划分
        "format": "yyyy-MM-dd",
        "min_doc_count": 0,
        "extended_bounds": {
          "min": "2016-01-01",
          "max": "2017-12-31"
        }
      },
      "aggs": {
        "group_by_brand": { //按照品牌下钻分析
          "terms": {
            "field": "brand"
          },
          "aggs": {
            "sum_price": {
              "sum": {
                "field": "price"
              }
            }
          }
        },
        "total_sum_price": {//每个季度的总销售额
          "sum": {
            "field": "price"
          }
        }
      }
    }
  }
}

搜索+聚合:统计指定品牌下每个颜色的销量
其实就是搜索和聚合操作相结合

GET /tvs/sales/_search 
{
  "size": 0,
  "query": {
    "term": {
      "brand": {
        "value": "小米"
      }
    }
  },
  "aggs": {
    "group_by_color": {
      "terms": {
        "field": "color"
      }
    }
  }
}

global bucket:单个品牌与所有品牌销量对比
global:就是global bucket,就是将所有数据纳入聚合的scope,而不管之前的query。
出来两个结果,一个结果,是基于query搜索结果来聚合的; 一个结果,是对所有数据执行聚合的

GET /tvs/sales/_search 
{
  "size": 0, 
  "query": {
    "term": {
      "brand": {
        "value": "长虹"
      }
    }
  },
  "aggs": {
    "single_brand_avg_price": {
      "avg": {
        "field": "price"
      }
    },
    "all": {
      "global": {},
      "aggs": {
        "all_brand_avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    }
  }
}

//返回结果
{
  "took": 12,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "failed": 0
  },
  "hits": {
    "total": 3,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "all": {
      "doc_count": 8,
      "all_brand_avg_price": {
        "value": 2650
      }
    },
    "single_brand_avg_price": {
      "value": 1666.6666666666667
    }
  }
}

过滤+聚合:统计价格大于1200的电视平均价格
先过滤再聚合

GET /tvs/sales/_search 
{
  "size": 0,
  "query": {
    "constant_score": {
      "filter": {
        "range": {
          "price": {
            "gte": 1200
          }
        }
      }
    }
  },
  "aggs": {
    "avg_price": {
      "avg": {
        "field": "price"
      }
    }
  }
}

bucket filter:一次统计牌品最近N,M天的平均价格

GET /tvs/sales/_search 
{
  "size": 0,
  "query": {
    "term": {
      "brand": {
        "value": "长虹"
      }
    }
  },
  "aggs": {
    "recent_150d": {
      "filter": {
        "range": {
          "sold_date": {
            "gte": "now-150d"
          }
        }
      },
      "aggs": {
        "recent_150d_avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    },
    "recent_140d": {
      "filter": {
        "range": {
          "sold_date": {
            "gte": "now-140d"
          }
        }
      },
      "aggs": {
        "recent_140d_avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    },
    "recent_130d": {
      "filter": {
        "range": {
          "sold_date": {
            "gte": "now-130d"
          }
        }
      },
      "aggs": {
        "recent_130d_avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    }
  }
}

aggs.filter,针对的是聚合去做的

如果放query里面的filter,是全局的,会对所有的数据都有影响

但是,如果,比如说,你要统计,长虹电视,最近1个月的平均值; 最近3个月的平均值; 最近6个月的平均值
我们就可以使用bucket filter:对不同的bucket下的aggs,进行filter
排序:按每种颜色的平均销售额降序排序
之前的话,排序,是按照每个bucket的doc_count降序来排的,但是假如说,我们现在统计出来每个颜色的电视的销售额,需要按照销售额降序排序????

GET /tvs/sales/_search 
{
  "size": 0,
  "aggs": {
    "group_by_color": {
      "terms": {
        "field": "color",
        "order": {
          "avg_price": "asc"//根据 avg_price来升序排序
        }
      },
      "aggs": {
        "avg_price": {
          "avg": {
            "field": "price"
          }
        }
      }
    }
  }
}

颜色+品牌下钻分析时按最深层metric进行排序

GET /tvs/sales/_search 
{
  "size": 0,
  "aggs": {
    "group_by_color": {
      "terms": {
        "field": "color"
      },
      "aggs": {
        "group_by_brand": {
          "terms": {
            "field": "brand",
            "order": {
              "avg_price": "desc"//这里是最深层 在这里做排序就好了
            }
          },
          "aggs": {
            "avg_price": {
              "avg": {
                "field": "price"
              }
            }
          }
        }
      }
    }
  }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345

推荐阅读更多精彩内容