1、人机对话系统的交互形式和应用场景
1、聊天。典型代表是小冰,它包括问候和寒暄,其特点是没有明确目的,而且不一定回答用户的问题。聊天在现有的人机对话系统中主要是起到情感陪伴的作用。
2、问答。它要对用户的问答给出精准的答案。这些问题可以是事实性的问题,如“姚明有多高”,也可能是其他定义类,描述类或者比较类的问题。问答系统可以根据问答的数据来源分为基于常见问题-答案列表的FAQ问答,基于问答社区数据的CQA问答,基于知识库的KBQA问答。
3、操控。只是解析出它的语义,来供第三方执行,最典型的操控是打开空调、打开台灯,或者播放某一首歌。
4、任务式对话。它是一个目的性很强的对话,目标是收集信息,以完成某个填表单式的任务,最常见的像订外卖、订酒店、订机票,这种方式通过对话来做。
5、主动对话。让机器主动发起话题,不同的是,前面的交互都是让人来主动发起这个交互。
2、人机对话技术架构
人机对话系统从学术界来讲,它的研究历史非常悠久,可能 AI 提出以后,在七八十年代就开始研究。它的技术分为五大部分:
1、语音识别:主要解决复杂真实场景噪声、用户口音多样的情况下,把人说的话转成文字,即做到“听得清”。
2、语义理解:主要是把用户说的话转成机器能理解执行的指令或查询,即做到“听得懂”。
3、对话管理:维护对话状态和目标,决定系统应该怎么说、怎么问下一句话,也就是生成一个应答的意图。
4、自然语言生成:就是根据系统应答的意图,用自然语言把这个应答意图表达出来。
5、语音合成: 用机器合成的语音把这句话播报出来。
这样形成一个完整人机对话的闭环。
3、语音识别场景演进
鸡尾酒会问题:
鸡尾酒会问题是在计算机语音识别领域的一个问题。
当前语音识别技术已经可以较高精度识别一个人所讲的话,但是当说话的人数为两人或者多人时,语音识别率就会极大的降低,这一难题被称为鸡尾酒会问题。
该问题给定混合信号,分离出鸡尾酒会中同时说话的每个人的独立信号。
4、人机对话系统中的机器角色演进
在人机对话里面机器的角色有个演进的过程:最早人机对话很简单,可以看成是个遥控器的替代品,用户通过固定句式或者单句指令来控制这个系统。
Siri、Amazon Echo 是一种助手的形态,也就是说,你可以通过自然语言交互,且对话是多轮的,甚至可以让机器有些情感。
但是下一个阶段是它会变成专家的角色,特别是面向行业或者特定领域时,当我们跟音箱对话时,希望这个音箱同时也是一个音乐专家,它可以跟你聊音乐的问题,可以跟你聊古典音乐,甚至教你一些音乐知识。我们跟儿童教育机器人对话时,希望这个机器人是一个儿童教育专家,我们跟空调对话时希望后面是个空调专家。这时它的特点是需要有这个领域的知识,而且能够帮你做推荐、做决策。
刘升平,AI 科技大本营在线公开课,基于知识图谱的人机对话系统