深入理解Dirichlet过程

Dirichlet分布(Dirichelt Distribution)和Dirichlet过程 (Dirichlet Process)广泛应用于信息检索、自然语言处理等领域,是理解主题模型的重要一步。而且它作为一种非参数模型(non-paramatric model),和参数模型一样有着越来越广泛的应用。

文本提供了一种对Dirichlet 过程的理解。本文适合了解高斯过程,对Dirichlet过程有一定了解,但又有些困惑的同学。希望读完这篇文章能进一步提升对Dirichlet的理解。

随机过程

粗略地说,随机过程是概率分布的扩展。我们一般讲概率分布,是有限维的随机变量的概率分布,而随机过程所研究的对象是无限维的。因此,也把随机过程所研究的对象称作随机函数

随机变量之于概率分布,就像随机函数之于随机过程

机器学习领域常见的随机过程有:Gaussian Process, Dirichlet Process, Beta Process, Gamma Process等等。

高斯过程

理解Dirichlet过程,可以类比高斯过程。高斯过程(GP)是定义在函数上的概率分布

这里的f(x)被称作随机函数,每一个x对应的f(x)都是一个随机变量,可以将这个随机函数看做是多维随机变量的扩展。由于我们一般考虑的函数的定义域都包含无限个自变量(如定义域为实数域),无法显式地写出其联合概率密度函数,因普通的多维随机变量的定义无法表示高斯过程的定义。

所以,一般的随机过程包括高斯过程,都是通过一个边缘概率密度函数(f(x1), f(x2), ..., f(xn))来定义的。

这相当于我们无法一次看完一个无限的东西,所以想了个办法,对它的局部照相。对于任何局部(x1, x2, ..., xn),我们都有一个相片(f(x1), f(x2), ..., f(xn))。这里,均值m和协方差c唯一地决定一个GP。

Dirichlet分布

Dirichlet分布是定义在K维概率单纯形(K-dimentional probability simplex)上的分布

K维概率单纯形,说的好像很复杂,其实就是和为1,因此可以将pi看作是一个概率分布。

Dirichlet分布的概率密度函数是

Dirichlet有很多优美的性质,比如将这里的随机变量的元素拆分或者合并,结果还是服从Dirichelt分布。如下

Dirichlet过程

Dirichlet过程(DP)是定义在概率测度上的分布

概率测度也就是概率,它是定义在样本空间sigam域上的函数,满足一定的性质。样本空间就是我们要研究的空间 ,比如主题模型中所有的词构成的空间就是我们的样本空间。sigma域也很简单,就是该空间的所有的子集构成的空间。对于有n个元素的样本空间 ,它的sigma域有2^n个元素。这里的“满足一定的性质”,主要指可列可加性。通俗地说,即一些不相交集合的并的概率等于对每个集合的概率作和。

和GP类似,我们无法显式地定义DP。那只能对DP的局部“照相”。如何照相呢?

设G是一个随机概率测度,对样本空间做一个划分(A1, A2, ..., Ak),(G(A1), G(A2), ..., G(Ak))就可以看做一张相片。这里的 G(A1), G(A2), ..., G(Ak)也是一个多维随机变量,和高斯过程中的f(x1), f(x2), ..., f(xn)相当。而且由于G是概率测度,我们还能得出G(A1)+G(A2)+...+G(Ak)=1,即一个划分和一个概率测度唯一地决定了一个概率分布。

如果对样本空间的任意一个划分(A1, A2, ..., Ak),都有(G(A1), G(A2), ..., G(Ak))满足Dirichlet分布。那么我们称G是一个Dirichlet过程。

记为

H是一个基分布(base distribution),可以看做G的期望;alpha是系数,可以看做G的方差的“倒数”。


参考文献

https://www.stats.ox.ac.uk/~teh/teaching/npbayes/mlss2007.pdf

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,013评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,205评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,370评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,168评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,153评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,954评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,271评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,916评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,382评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,877评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,989评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,624评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,209评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,199评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,418评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,401评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,700评论 2 345

推荐阅读更多精彩内容