使用TensorFlow拟合非线性曲线
SourceFile on GitHub:
注意:
- 运行在Python3下,直接运行即可观看运行效果
- 提前安装好matplotlib
python -mpip install -U matplotlib
线上效果图
- 上面的是原始带噪曲线,以及使用TensorFlow经过不断的学习和优化,拟合出来的曲线
- 下方的红色点点是计算出来的Loss,也即是真实值和预测值之间的误差,对于误差的计算,使用的MSE 均方误差,特别注意,这里不要上来就套用了Cross_Entropy
- 想看红点点的具体的Loss值大小,可以看黑色部分的数值。
代码如下
"""
Please note, this code is only for python 3+. If you are using python 2+, please modify the code accordingly.
"""
from __future__ import print_function
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt # Y
# FOR matplotlib ,please install on command line
# python -mpip install -U pip
# python -mpip install -U matplotlib
def HiddenLayer(inputs, in_size, out_size, activation_function=None):
# add one more layer and return the output of this layer
Weights = tf.Variable(tf.random_normal(shape=(in_size,out_size)))
biases = tf.Variable(tf.zeros(shape=(1, out_size)))
Wx_plus_b = tf.matmul(inputs,Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
# Make up some real data
row_size = 500
col_size = 1
NoisePw = 10
x_data = (2*np.random.rand(row_size,col_size)-1)*10
x_data = x_data[np.argsort(x_data[:,0])] #x_data has been sorded for plotting, DO NOT use x_data.sort()
noise = np.random.normal(0, NoisePw , x_data.shape)
y_data = 2.1* np.square(x_data) + 14 + noise
fig = plt.figure(1)
ax = fig.add_subplot(2,1,1)
ax_los = fig.add_subplot(2,1,2)
if 1:
ax.plot(x_data,y_data)
plt.ion()
plt.show()
print(x_data)
# define placeholder for inputs to network
xs = tf.placeholder(tf.float32,shape=(None,1))
ys = tf.placeholder(tf.float32,shape=(None,1))
# add hidden layer and output layer
HiddenNode = HiddenLayer(xs, 1, 10 , activation_function=tf.sigmoid)
prediction = HiddenLayer(HiddenNode , 10, 1, activation_function=None)
# the loss between prediction and real data
global_step = tf.Variable(0)
# use exponential_decay
# learning_rate = init_learning_rate * decay_rate ^(global_step/decay_steps),
learning_rate = tf.train.exponential_decay(0.2,global_step,50,0.95,staircase=True)
# use MSE , Don't use Cross_Entropy
loss = tf.reduce_mean(tf.square(y_data - prediction))
# use AdamOptimizer instead of GradientDescentOptimizer
train_step = tf.train.AdamOptimizer(learning_rate).minimize(loss,global_step=global_step)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
feed = {xs: x_data, ys: y_data}
for i in range(10000):
# training
sess.run(train_step, feed_dict=feed)
if i % 100 == 60:
# to see the step improvement
try:
ax.lines.remove(lines[0])
except Exception:
pass
print('after',i,'turn,loss is:',sess.run(loss, feed_dict=feed))
lines = ax.plot(x_data, sess.run(prediction, feed_dict=feed))
ax_los.plot(i,sess.run(loss, feed_dict=feed),color='r',marker = '.',linewidth=0.1)
plt.pause(0.1)
plt.ioff()
plt.show()