精巧好用之DelayQueue
DelayQueue是一种无界的阻塞队列,队列里只允许放入可以"延期"的元素,队列中列头的元素是最先"到期"的元素。如果队列中没有任何元素"到期",尽管队列中有元素,也不能从队列获取到任何元素。
源码分析
首先还是看一下内部数据结构:
public class DelayQueue<E extends Delayed> extends AbstractQueue<E>
implements BlockingQueue<E> {
private transient final ReentrantLock lock = new ReentrantLock();
private transient final Condition available = lock.newCondition();
private final PriorityQueue<E> q = new PriorityQueue<E>();
}
内部结构非常简单,一把锁,一个条件,一个优先级队列。
DelayQueue要求放入其中的元素必须实现Delayed接口,看下这个接口:
/**
* A mix-in style interface for marking objects that should be
* acted upon after a given delay.
*
* <p>An implementation of this interface must define a
* <tt>compareTo</tt> method that provides an ordering consistent with
* its <tt>getDelay</tt> method.
*
* @since 1.5
* @author Doug Lea
*/
public interface Delayed extends Comparable<Delayed> {
/**
* Returns the remaining delay associated with this object, in the
* given time unit.
*
* @param unit the time unit
* @return the remaining delay; zero or negative values indicate
* that the delay has already elapsed
*/
long getDelay(TimeUnit unit);
}
这个接口定义了一个返回延时值的方法,而且扩展了Comparable接口,具体实现的排序方式会和延时值有关,延时值最小的会排在前面。再结合上面DelayQueue的内部数据结构,我们就可以大概脑补这个过程了。
既然是阻塞队列,还是从put和take方法开始入手,先看下put方法:
public boolean offer(E e) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
//获取队头元素。
E first = q.peek();
//将元素放入内部队列。
q.offer(e);
if (first == null || e.compareTo(first) < 0)
available.signalAll(); //如果队头没有元素 或者 当前元素比队头元素的延时值小,那么唤醒available条件上的线程。
return true;
} finally {
lock.unlock();
}
}
/**
* 插入一个元素到延迟队列,由于队列是无界的,所以这个方法永远不会阻塞。
*
* @param e the element to add
* @throws NullPointerException {@inheritDoc}
*/
public void put(E e) {
offer(e);
}
再看下take方法:
public E take() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
for (;;) {
//获取队头元素。
E first = q.peek();
if (first == null) {
available.await();//如果队头没有元素,那么当前线程在available条件上等待。
} else {
//如果队头有元素,获取元素的延时值。
long delay = first.getDelay(TimeUnit.NANOSECONDS);
if (delay > 0) {
//如果延时值大于0,那么等待一下。
long tl = available.awaitNanos(delay);
} else {
//否则获取并移除队列列头元素。
E x = q.poll();
assert x != null;
if (q.size() != 0)
available.signalAll(); // 如果内部队列中还有元素,那么唤醒其他在available条件上等待着的take线程。
return x;
}
}
}
} finally {
lock.unlock();
}
}
使用场景
我们谈一下实际的场景吧。我们在开发中,有如下场景:
a) 关闭空闲连接。服务器中,有很多客户端的连接,空闲一段时间之后需要关闭之。
b) 缓存。缓存中的对象,超过了空闲时间,需要从缓存中移出。
c) 任务超时处理。在网络协议滑动窗口请求应答式交互时,处理超时未响应的请求。
一种笨笨的办法就是,使用一个后台线程,遍历所有对象,挨个检查。这种笨笨的办法简单好用,但是对象数量过多时,可能存在性能问题,检查间隔时间不好设置,间隔时间过大,影响精确度,过小则存在效率问题。而且做不到按超时的时间顺序处理。
这场景,使用DelayQueue最适合了。
以下是一个缓存的简单实现。共包括三个类Pair、DelayItem、Cache。如下:
public class Pair<K, V> {
public K first;
public V second;
public Pair() {}
public Pair(K first, V second) {
this.first = first;
this.second = second;
}
}
以下是Delayed的实现:
public class DelayItem<T> implements Delayed {
/** Base of nanosecond timings, to avoid wrapping */
private static final long NANO_ORIGIN = System.nanoTime();
/**
* Returns nanosecond time offset by origin
*/
final static long now() {
return System.nanoTime() - NANO_ORIGIN;
}
/**
* Sequence number to break scheduling ties, and in turn to guarantee FIFO order among tied
* entries.
*/
private static final AtomicLong sequencer = new AtomicLong(0);
/** Sequence number to break ties FIFO */
private final long sequenceNumber;
/** The time the task is enabled to execute in nanoTime units */
private final long time;
private final T item;
public DelayItem(T submit, long timeout) {
this.time = now() + timeout;
this.item = submit;
this.sequenceNumber = sequencer.getAndIncrement();
}
public T getItem() {
return this.item;
}
public long getDelay(TimeUnit unit) {
long d = unit.convert(time - now(), TimeUnit.NANOSECONDS);
return d;
}
public int compareTo(Delayed other) {
if (other == this) // compare zero ONLY if same object
return 0;
if (other instanceof DelayItem) {
DelayItem x = (DelayItem) other;
long diff = time - x.time;
if (diff < 0)
return -1;
else if (diff > 0)
return 1;
else if (sequenceNumber < x.sequenceNumber)
return -1;
else
return 1;
}
long d = (getDelay(TimeUnit.NANOSECONDS) - other.getDelay(TimeUnit.NANOSECONDS));
return (d == 0) ? 0 : ((d < 0) ? -1 : 1);
}
}
以下是Cache的实现,包括了put和get方法,还包括了可执行的main函数。
public class Cache<K, V> {
private static final Logger LOG = Logger.getLogger(Cache.class.getName());
private ConcurrentMap<K, V> cacheObjMap = new ConcurrentHashMap<K, V>();
private DelayQueue<DelayItem<Pair<K, V>>> q = new DelayQueue<DelayItem<Pair<K, V>>>();
private Thread daemonThread;
public Cache() {
Runnable daemonTask = new Runnable() {
public void run() {
daemonCheck();
}
};
daemonThread = new Thread(daemonTask);
daemonThread.setDaemon(true);
daemonThread.setName("Cache Daemon");
daemonThread.start();
}
private void daemonCheck() {
if (LOG.isLoggable(Level.INFO))
LOG.info("cache service started.");
for (;;) {
try {
DelayItem<Pair<K, V>> delayItem = q.take();
if (delayItem != null) {
// 超时对象处理
Pair<K, V> pair = delayItem.getItem();
cacheObjMap.remove(pair.first, pair.second); // compare and remove
}
} catch (InterruptedException e) {
if (LOG.isLoggable(Level.SEVERE))
LOG.log(Level.SEVERE, e.getMessage(), e);
break;
}
}
if (LOG.isLoggable(Level.INFO))
LOG.info("cache service stopped.");
}
// 添加缓存对象
public void put(K key, V value, long time, TimeUnit unit) {
V oldValue = cacheObjMap.put(key, value);
if (oldValue != null)
q.remove(key);
long nanoTime = TimeUnit.NANOSECONDS.convert(time, unit);
q.put(new DelayItem<Pair<K, V>>(new Pair<K, V>(key, value), nanoTime));
}
public V get(K key) {
return cacheObjMap.get(key);
}
// 测试入口函数
public static void main(String[] args) throws Exception {
Cache<Integer, String> cache = new Cache<Integer, String>();
cache.put(1, "aaaa", 3, TimeUnit.SECONDS);
Thread.sleep(1000 * 2);
{
String str = cache.get(1);
System.out.println(str);
}
Thread.sleep(1000 * 2);
{
String str = cache.get(1);
System.out.println(str);
}
}
}
运行Sample,main函数执行的结果是输出两行,第一行为aaa,第二行为null。