janusgraph gremlin-hadoop spark on yarn数据导入

基于apache hadoop的配置安装

安装相关的大数据组件,包括:

  • hadoop 2.6.2
  • spark 1.6.1
  • hbase 1.0.0
  • zookeeper 3.4.10
  • janusgraph 0.2.0

环境变量的配置

每台机器上都需要配置如下环境变量

export JAVA_HOME=/usr/local/lib/jdk1.8.0_60
export HBASE_CONF_DIR=/opt/hbase-1.0.0/conf
export HADOOP_CONF_DIR=/opt/hadoop-2.6.5/etc/hadoop
export HADOOP_HOME=/opt/hadoop-2.6.5
export PATH=$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin:$HADOOP_HOME/sbin
export CLASSPATH=$HADOOP_CONF_DIR:$SPARK_CONF_DIR:$HBASE_CONF_DIR
export SPARK_CONF_DIR=/opt/spark-1.6.1-bin-hadoop2.6/conf

添加相应的jar到$JANUSGRAPH_HOME/lib

  • 添加spark的spark-assembly-1.6.1-hadoop2.6.0.jar。由于其中包含了相应的hadoop的jar所以不需要单独的添加hadoop的jar。
  • 添加hbase的相关jar。这些jar需要和hbase的发行版本相匹配,要不然会出java.net.ConnectException: Connection refused的问题。当出现这个问题的时候需要删除和版本不匹配的jar,并重启hbase的相关服务解决。

NOTE:

  • 在添加相关jar之前,需要删除之前jansgraph自带的相应的jar。
  • 由于hbase-client-1.0.0.jar依赖的guava版本为16,所以需要删除掉自带的guava-18.jar,更换为16版本。要不然会出现
    org.apache.hadoop.hbase.DoNotRetryIOException: java.lang.IllegalAccessError: tried to access method com.google.common.base.Stopwatch.<init>()V from class org.apache.hadoop.hbase.zookeeper.MetaTableLocator

$JANUSGRAPH_HOME/lib分发到集群的每台机器上。

配置$JANUSGRAPH_HOME/conf/hadoop-graph/hadoop-load.properties

#
# Hadoop Graph Configuration
#
gremlin.graph=org.apache.tinkerpop.gremlin.hadoop.structure.HadoopGraph
gremlin.hadoop.graphInputFormat=org.apache.tinkerpop.gremlin.hadoop.structure.io.gryo.GryoInputFormat
gremlin.hadoop.graphOutputFormat=org.apache.hadoop.mapreduce.lib.output.NullOutputFormat
gremlin.hadoop.inputLocation=./data/grateful-dead.kryo
gremlin.hadoop.outputLocation=output
gremlin.hadoop.jarsInDistributedCache=true

#
# GiraphGraphComputer Configuration
#
giraph.minWorkers=2
giraph.maxWorkers=2
giraph.useOutOfCoreGraph=true
giraph.useOutOfCoreMessages=true
mapred.map.child.java.opts=-Xmx1024m
mapred.reduce.child.java.opts=-Xmx1024m
giraph.numInputThreads=4
giraph.numComputeThreads=4
giraph.maxMessagesInMemory=100000

#
# SparkGraphComputer Configuration
#
spark.master=yarn-client
spark.executor.memory=512m
spark.executor.instances=2
spark.executor.cores=4
spark.serializer=org.apache.spark.serializer.KryoSerializer
spark.ui.port=14040
spark.app.name=janusgraph-data-load
spark.app.id=janusgraph-data-load
#以下两个配置只对spark的jar有效,用来提高spark相关jar的加载速度
#spark.yarn.jar=hdfs://wangmaoshuai.novalocal:8020/user/root/share/lib/spark/spark-assembly-1.6.1-hadoop2.6.0.jar
#spark.yarn.archive=hdfs://wangmaoshuai.novalocal:8020/user/root/share/lib/spark/janusgraph-0.2.0.zip
spark.yarn.am.extraJavaOptions=-Djava.library.path=/opt/hadoop-2.6.5/lib/native
#配置成分发到集群的janusgraph-lib的文件地址
spark.executor.extraClassPath=/opt/janusgraph-lib/*:/opt/hadoop-2.6.5/etc/hadoop:/opt/hbase-1.0.0/conf:/opt/spark-1.6.1-bin-hadoop2.6/conf

spark.executor.extraJavaOptions=-Djava.library.path=/opt/hadoop-2.6.5/lib/native

#cache config
gremlin.spark.persistContext=true
gremlin.spark.graphStorageLevel=MEMORY_AND_DISK
#saprk history
spark.history.provider=org.apache.spark.deploy.yarn.history.YarnHistoryProvider
spark.history.ui.port=18080
spark.history.kerberos.keytab=none
spark.history.kerberos.principal=none
spark.yarn.services=org.apache.spark.deploy.yarn.history.YarnHistoryService
spark.yarn.historyServer.address=http://wangmaoshuai.novalocal:18080

配置$JANUSGRAPH_HOME/conf/hadoop-graph/read-hbase.properties

#
# Hadoop Graph Configuration
#
gremlin.graph=org.apache.tinkerpop.gremlin.hadoop.structure.HadoopGraph
gremlin.hadoop.graphInputFormat=org.janusgraph.hadoop.formats.hbase.HBaseInputFormat
gremlin.hadoop.graphOutputFormat=org.apache.tinkerpop.gremlin.hadoop.structure.io.gryo.GryoOutputFormat

gremlin.hadoop.jarsInDistributedCache=true
gremlin.hadoop.inputLocation=none
gremlin.hadoop.outputLocation=output

#
# JanusGraph HBase InputFormat configuration
#
janusgraphmr.ioformat.conf.storage.backend=hbase
janusgraphmr.ioformat.conf.storage.hostname=10.110.13.210
#zookeeper.znode.parent=/hbase-unsecure
janusgraphmr.ioformat.conf.storage.hbase.table=SparkYarnImportTest

#
# SparkGraphComputer Configuration
#
spark.master=yarn-client
spark.serializer=org.apache.spark.serializer.KryoSerializer

spark.executor.extraClassPath=/opt/janusgraph-lib/*:/opt/hadoop-2.6.5/etc/hadoop:/opt/hbase-1.0.0/conf:/opt/spark-1.6.1-bin-hadoop2.6/conf
spark.yarn.am.extraJavaOptions=-Djava.library.path=/opt/hadoop-2.6.5/lib/native
spark.executor.extraJavaOptions=-Djava.library.path=/opt/hadoop-2.6.5/lib/native

测试

bin/gremlin.sh

         \,,,/
         (o o)
-----oOOo-(3)-oOOo-----
plugin activated: janusgraph.imports
gremlin> :plugin use tinkerpop.hadoop
==>tinkerpop.hadoop activated
gremlin> :plugin use tinkerpop.spark
==>tinkerpop.spark activated
gremlin> :load data/grateful-dead-janusgraph-schema.groovy
==>true
==>true
gremlin> graph = JanusGraphFactory.open('conf/janusgraph-hbase.properties')
==>standardjanusgraph[hbase:[kg-server-96.kg.com, kg-agent-95.kg.com, kg-agent-97.kg.com]]
gremlin> defineGratefulDeadSchema(graph)
==>null
gremlin> graph.close()
==>null
gremlin> if (!hdfs.exists('data/grateful-dead.kryo')) hdfs.copyFromLocal('data/grateful-dead.kryo','data/grateful-dead.kryo')
==>null
gremlin> graph = GraphFactory.open('conf/hadoop-graph/hadoop-load.properties')
==>hadoopgraph[gryoinputformat->nulloutputformat]
gremlin> blvp = BulkLoaderVertexProgram.build().writeGraph('conf/janusgraph-hbase.properties').create(graph)
==>BulkLoaderVertexProgram[bulkLoader=IncrementalBulkLoader,vertexIdProperty=bulkLoader.vertex.id,userSuppliedIds=false,keepOriginalIds=true,batchSize=0]
gremlin> graph.compute(SparkGraphComputer).program(blvp).submit().get()
...
==>result[hadoopgraph[gryoinputformat->nulloutputformat],memory[size:0]]
gremlin> graph.close()
==>null
gremlin> graph = GraphFactory.open('conf/hadoop-graph/read-hbase.properties')
==>hadoopgraph[cassandrainputformat->gryooutputformat]
gremlin> g = graph.traversal().withComputer(SparkGraphComputer)
==>graphtraversalsource[hadoopgraph[cassandrainputformat->gryooutputformat], sparkgraphcomputer]
gremlin> g.V().count()
...
==>808
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,378评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,356评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,702评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,259评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,263评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,036评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,349评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,979评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,469评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,938评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,059评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,703评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,257评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,262评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,501评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,792评论 2 345

推荐阅读更多精彩内容