Java_对共享变量进行多线程同步访问

我们在开发应用的时候,如果需要对某一个共享变量进行多线程同步访问的时候,可以使用我们学到的Java多线程的18般武艺进行处理,并且可以完美的运行,毫无Bug!

        注意这是单机应用,也就是所有的请求都会分配到当前服务器的JVM内部,然后映射为操作系统的线程进行处理!而这个共享变量只是在这个JVM内部的一块内存空间!

      后来业务发展,需要做集群,一个应用需要部署到几台机器上然后做负载均衡,

如果我们业务中确实存在这个场景的话,我们就需要一种方法解决这个问题!

          为了保证一个方法或属性在高并发情况下的同一时间只能被同一线程执行,在传统单体应用单机部署的情况下,可以使用java并发处理相关的API(如 ReentrantLock或Synchronized )进行互斥控制。但是,随着业务发展的需要,原单体单机部署的系统被演化成分布式集群系统后,由于分布式系统多线程、多进程并且分布在不同机器上,这将使原单机部署情况下的并发控制锁策略失效,单纯的java API并不能提供分布式锁的能力,为了解决这个问题就需要一种跨JVM的互斥机制来控制共享资源的访问,这就是分布式锁要解决的问题。

二、分布式锁应具备哪些条件

1、在分布式系统环境下,一个方法在同一时间只能被一个机器的一个线程执行;

2、高可用、高性能的获取锁与释放锁;

3、具备可重入特性;

4、具备锁失效机制,防止死锁;

5、具备非阻塞锁特性,即没有获取到锁将直接返回获取锁失败。

三、分布式锁的三种实现方式

目前几乎很多大型网站及应用都是分布式部署的,分布式场景中的数据一致性问题一直是一个比较重要的话题。分布式的CAP理论告诉我们“任何一个分布式系统都无法同时满足一致性、可用性和分区容错性,最多只能满足两项。”所以,很多系统在设计之初就要对这三者进行取舍。在互联网领域的绝大多数的场景中,都需要牺牲掉一致性来换取系统的高可用性,系统往往只需要保证最终一致性,只要这个最终时间是在用户可以接受的范围内即可。

在很多场景中,为了保证数据的最终一致性,需要很多的技术方案来支持,比如分布式事务、分布式锁等。

分布式锁的三种实现方式:

1、基于数据库实现分布式锁;

2、基于缓存(Redis)实现分布式锁;

3、基于Zookeeper实现分布式;

尽管有这三种方案,但是不同的业务也要根据自己的情况进行选型,他们之间没有最好只有更适合!

四、基于数据库实现分布式锁

基于数据库的实现方式的核心思想是:在数据库中创建一个表,表中包含方法名等字段,并在方法名字段上创建唯一索引,想要执行某个方法,就使用这个方法名向表中插入数据,成功插入则获取锁,执行完成后删除对应的行数据释放锁。

1、创建一个表

2、想要执行某个方法,就要使用这个方法名向表中插入数据

INSERT INTO method_lock (method_name, desc) VALUES ('methodName', '测试的methodName');

因为我们对method_name做了唯一性约束,这里如果有多个请求同时提交到数据库的话,数据库会保证只有一个操作可以成功,那么我们就可以认为操作成功的那个线程获得了该方法的锁,可以执行方法体内容。

3、成功插入则获取锁,执行完毕后删除对应的行数据释放锁

delete from method_lock where method_name ='methodName';

注意:这只是使用基于数据库的一种方法,使用数据库实现分布式锁还有很多其它的方法。

4、存在的一些问题

(1)因为是基于数据库实现的,数据库的高可用性和性能将直接影响分布式锁的可用性和性能,所以,数据库需要双机热备、数据同步、准备切换。

(2)不具备可重入的特性,因为同一线程在释放锁之前,行数据一直存在,无法再次成功插入数据,所以,需要在表中新增一列,用于记录当前获取到锁的机器和线程信息,在再次获取锁的时候,先查询表中机器和线程信息是否是当前机器和线程,若相同则直接获取锁。

(3)没有锁失效机制,因为有可能出现成功插入数据后,服务器宕机了,对应的数据没有被删除,当服务恢复后一直获取不到锁,所以,需要在表中新增一列,用于记录失效时间,并且需要定时消除这些失效的数据。

(4)不具备阻塞锁特性,获取不到锁直接返回失败,所以需要优化获取逻辑,循环多次去获取。

(5)在实施的过程中遇到各种不同的问题,为了解决这些问题,实现方式将越来越复杂,依赖数据库需要一定的资源开销,性能问题需要考虑。

五、基于缓存(Redis)实现分布式锁

1、使用Redis实现分布式锁原因:

(1)Redis有很高的性能;

(2)Redis命令对此支持较好,实现起来比较方便

2、使用命令简介

(1) setnx

SETNX key val:当key不存在时,set一个key为val的字符串,返回1;若key存在,则什么都不做,返回0。

(2)expire

expire key timeout:为key设置一个超时时间,单位是秒,超过这个时间锁会自动释放,避免死锁。

(3)delete

删除key。

3、实现思想

(1)获取锁的时候,使用 setnx 加锁,并使用expire命令为锁添加一个超时时间,超过该时间则自动释放锁,锁的值为一个随机生成的UUID,通过此在释放锁的时候进行判断。

(2)获取锁的时候还设置了一个获取的超时时间,若超过这个时间则放弃获取锁。

(3)释放锁的时候,通过UUID判断是不是该锁,若是该锁,则执行delete进行锁释放。

4、分布式锁的简单代码

/**

* 分布式锁的简单实现代码

* Created by 素小暖 on 2020/2/12.

*/

public class DistributedLock {

    private final JedisPool jedisPool;

    public DistributedLock(JedisPool jedisPool) {

        this.jedisPool = jedisPool;

    }

    /**

    * 加锁

    * @param lockName      锁的key

    * @param acquireTimeout 获取超时时间

    * @param timeout        锁的超时时间

    * @return 锁标识

    */

    public String lockWithTimeout(String lockName, long acquireTimeout, long timeout) {

        Jedis conn = null;

        String retIdentifier = null;

        try {

            // 获取连接

            conn = jedisPool.getResource();

            // 随机生成一个value

            String identifier = UUID.randomUUID().toString();

            // 锁名,即key值

            String lockKey = "lock:" + lockName;

            // 超时时间,上锁后超过此时间则自动释放锁

            int lockExpire = (int) (timeout / 1000);

            // 获取锁的超时时间,超过这个时间则放弃获取锁

            long end = System.currentTimeMillis() + acquireTimeout;

            while (System.currentTimeMillis() < end) {

                if (conn.setnx(lockKey, identifier) == 1) {

                    conn.expire(lockKey, lockExpire);

                    // 返回value值,用于释放锁时间确认

                    retIdentifier = identifier;

                    return retIdentifier;

                }

                // 返回-1代表key没有设置超时时间,为key设置一个超时时间

                if (conn.ttl(lockKey) == -1) {

                    conn.expire(lockKey, lockExpire);

                }

                try {

                    Thread.sleep(10);

                } catch (InterruptedException e) {

                    Thread.currentThread().interrupt();

                }

            }

        } catch (JedisException e) {

            e.printStackTrace();

        } finally {

            if (conn != null) {

                conn.close();

            }

        }

        return retIdentifier;

    }

    /**

    * 释放锁

    * @param lockName  锁的key

    * @param identifier 释放锁的标识

    * @return

    */

    public boolean releaseLock(String lockName, String identifier) {

        Jedis conn = null;

        String lockKey = "lock:" + lockName;

        boolean retFlag = false;

        try {

            conn = jedisPool.getResource();

            while (true) {

                // 监视lock,准备开始事务

                conn.watch(lockKey);

                // 通过前面返回的value值判断是不是该锁,若是该锁,则删除,释放锁

                if (identifier.equals(conn.get(lockKey))) {

                    Transaction transaction = conn.multi();

                    transaction.del(lockKey);

                    List<Object> results = transaction.exec();

                    if (results == null) {

                        continue;

                    }

                    retFlag = true;

                }

                conn.unwatch();

                break;

            }

        } catch (JedisException e) {

            e.printStackTrace();

        } finally {

            if (conn != null) {

                conn.close();

            }

        }

        return retFlag;

    }

}

5、测试

例子中使用50个线程模拟秒杀一个商品,使用–运算符来实现商品减少,从结果有序性就可以看出是否为加锁状态。

模拟秒杀服务,在其中配置了jedis线程池,在初始化的时候传给分布式锁,供其使用。

/**

* Created by 素小暖 on 2020/2/12.

*/

public class Service {

    private static JedisPool pool = null;

    private DistributedLock lock = new DistributedLock(pool);

    int n = 500;

    static {

        JedisPoolConfig config = new JedisPoolConfig();

        // 设置最大连接数

        config.setMaxTotal(200);

        // 设置最大空闲数

        config.setMaxIdle(8);

        // 设置最大等待时间

        config.setMaxWaitMillis(1000 * 100);

        // 在borrow一个jedis实例时,是否需要验证,若为true,则所有jedis实例均是可用的

        config.setTestOnBorrow(true);

        pool = new JedisPool(config, "127.0.0.1", 6379, 3000);

    }

    public void seckill() {

        // 返回锁的value值,供释放锁时候进行判断

        String identifier = lock.lockWithTimeout("resource", 5000, 1000);

        System.out.println(Thread.currentThread().getName() + "获得了锁");

        System.out.println(--n);

        lock.releaseLock("resource", identifier);

    }

}

结果如下,有序的:

<img src="https://pic1.zhimg.com/v2-1f9616506e233f5c12a81ce6a377a754_b.jpeg" data-caption="" data-size="normal" data-rawwidth="191" data-rawheight="392" class="content_image" width="191"/>

若注释使用锁的部分:

public void seckill() {

    // 返回锁的value值,供释放锁时候进行判断

    //String indentifier = lock.lockWithTimeout("resource", 5000, 1000);

    System.out.println(Thread.currentThread().getName() + "获得了锁");

    System.out.println(--n);

    //lock.releaseLock("resource", indentifier);

}

从结果可以看出,有一些是异步进行的:

<img src="https://pic1.zhimg.com/v2-7239978a2daf7d8bf5804ad898fb75bc_b.jpg" data-caption="" data-size="normal" data-rawwidth="204" data-rawheight="446" class="content_image" width="204"/>

六、基于Zookeeper实现分布式

Zookeeper是一个为分布式应用提供一致性服务的开源组件,它内部是一个分层的文件系统目录树结构,规定同一目录下只能有一个唯一文件名。

基于Zookeeper实现分布式锁的步骤如下:

1、创建一个目录mylock;

2、创建A想获取锁就在mylock目录下创建临时顺序节点;

3、获取mylock目录下所有的子节点,然后获取比自己小的兄弟节点,如果不存在,则说明当前线程顺序号最小,获取锁;

4、线程B获取所有节点,判断自己不是最小节点,设置监听比自己次小的节点;

5、线程A处理完,删除自己的节点,线程B监听到变更事件,判断自己是不是最小节点,如果是,获取锁。

这里推荐一个Apache的开源库Curator,它是一个ZooKeeper客户端,Curator提供的InterProcessMutex是分布式锁的实现,acquire方法用于获取锁,release方法用于释放锁。

优点:具备高可用、可重入、阻塞锁特性,可解决失效死锁的问题。

缺点:因为需要频繁的创建和删除节点,性能上不如Redis方式。

<img src="https://pic4.zhimg.com/v2-91d7cbeaba5c3aa5c6921db4b393fe47_b.jpg" data-caption="" data-size="normal" data-rawwidth="600" data-rawheight="400" class="origin_image zh-lightbox-thumb" width="600" data-original="https://pic4.zhimg.com/v2-91d7cbeaba5c3aa5c6921db4b393fe47_r.jpg"/>

七、总结

上面的三种实现方式,没有在所有场合都是完美的,所以,应根据不同的应用场景选择最适合的实现方式。

在分布式环境中,对资源进行上锁有时候是很重要的,比如秒杀,这时候使用分布式锁可以很好地控制资源。

当然,在具体使用中,还要考虑很多因素,比如超时时间的选取,获取锁时间的选取对并发量都有很大的影响,上述实现的分布式锁只是一个简单的实现,主要是一种思想,仅做入门参考

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,482评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,377评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,762评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,273评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,289评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,046评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,351评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,988评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,476评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,948评论 2 324
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,064评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,712评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,261评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,264评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,486评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,511评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,802评论 2 345

推荐阅读更多精彩内容