lambda使用

来源于https://blog.csdn.net/youzhouliu/article/details/78948140
简单来说,编程中提到的 lambda 表达式,通常是在需要一个函数,但是又不想费神去命名一个函数的场合下使用,也就是指匿名函数。其一般有如下几种使用方式:

1、lambda的一般形式是关键字lambda后面跟一个或多个参数,紧跟一个冒号,以后是一个表达式。lambda是一个表达式而不是一个语句。它能够出现在Python语法不允许def出现的地方。作为表达式,lambda返回一个值(即一个新的函数)。lambda用来编写简单的函数,而def用来处理更强大的任务。例如:

f = lambda x,y,z : x+y+z  
print f(1,2,3)  
  
g = lambda x,y=2,z=3 : x+y+z  
print g(1,z=4,y=5) 
 
结果:
6  
10

2、lambda表达式常用来编写跳转表(jump table),就是行为的列表或字典。例如:

L = [(lambda x: x**2),  
    (lambda x: x**3),  
    (lambda x: x**4)]  
print L[0](2),L[1](2),L[2](2)  
  
D = {'f1':(lambda: 2+3),  
    'f2':(lambda: 2*3),  
    'f3':(lambda: 2**3)}  
print D['f1'](),D['f2'](),D['f3']() 
 
结果:
4 8 16  
5 6 8 

3、lambda表达式可以嵌套使用,但是从可读性的角度来说,应尽量避免使用嵌套的lambda表达式。

Lambda函数又称匿名函数,匿名函数就是没有名字的函数,函数没有名字也行?当然可以啦。有些函数如果只是临时一用,而且它的业务逻辑也很简单时,就没必要非给它取个名字不可。lamdba函数的正确使用场景:

1、函数式编程

尽管Python算不上是一门纯函数式编程语言,但它本身提供了很多函数式编程的特性,Python中,也有几个定义好的全局函数方便使用的,像map、reduce、filter、sorted这些函数都支持函数作为参数,lambda函数就可以应用在函数式编程中。如下:

from functools import reduce 
foo = [2, 18, 9, 22, 17, 24, 8, 12, 27]
 
print (list(filter(lambda x: x % 3 == 0, foo)))
#[18, 9, 24, 12, 27]
 
print (list(map(lambda x: x * 2 + 10, foo)))
#[14, 46, 28, 54, 44, 58, 26, 34, 64]
 
print (reduce(lambda x, y: x + y, foo))
#139

2、闭包

闭包本身是一个晦涩难懂的概念,在这里我们以简单粗暴地理解为闭包就是一个定义在函数内部的函数,闭包使得变量即使脱离了该函数的作用域范围也依然能被访问到。lambda函数作为闭包的例子:

>>> def my_add(n):
...     return lambda x:x+n
>>> add_3 = my_add(3)
>>> add_3(7)
10

这里lambda函数就是一个闭包,在全局作用域范围中,add_3(7)可以正常执行且返回值为10,之所以返回10是因为在my_add局部作用域中,变量n的值在闭包的作用使得它在全局作用域也可以被访问到。

换成常规函数也可以实现闭包,只不过是这种方式稍显啰嗦,如下:

>>> def my_add(n):
...     def wrapper(x):
...         return x+n
...     return wrapper
...
>>> add_5 = my_add(5)
>>> add_5(2)
7

不过不是任何情况lambda函数都要比常规函数更清晰明了,看这个例子:
f = lambda x: [[y for j, y in enumerate(set(x)) if (i >> j) & 1] for i in range(2**len(set(x)))]
这是返回某个集合的所有子集的lambda函数,相信你要看一会儿才能看明白。
python中有这样一句话是Explicit is better than implicit(明了胜于晦涩)。若用lambda函数不能使代码变得更清晰,就要考虑使用常规的方式来定义函数。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342