postgresql row_to_json的妙用(转载)

A new feature in PostgreSQL 9.2 is JSON support. It includes a JSON data type and two JSON functions. These allow us to return JSON directly from the database server. This article covers how it is done and includes a benchmark comparing it with traditional Rails JSON generation techniques.

How To

The simplest way to return JSON is with row_to_json() function. It accepts a row value and returns a JSON value.

select row_to_json(words) from words;

This will return a single column per row in the words table.

{"id":6013,"text":"advancement","pronunciation":"advancement",...}

However, sometimes we only want to include some columns in the JSON instead of the entire row. In theory we could use the row constructor method.

select row_to_json(row(id, text)) from words;

While this does return only the id and text columns, unfortunately it loses the field names and replaces them with f1, f2, f3, etc.

{"f1":6013,"f2":"advancement"}

To work around this we must either create a row type and cast the row to that type or use a subquery. A subquery will typically be easier.

select row_to_json(t)from (  select id, text from words) t

This results in the JSON output for which we would hope:

    {"id":6013,"text":"advancement"}

The other commonly used technique is array_agg and array_to_json. array_agg is a aggregate function like sum or count. It aggregates its argument into a PostgreSQL array.array_to_json takes a PostgreSQL array and flattens it into a single JSON value.

    select array_to_json(array_agg(row_to_json(t)))    from (      select id, text from words    ) t

This will result in a JSON array of objects:

    [{"id":6001,"text":"abaissed"},{"id":6002,"text":"abbatial"},{"id":6003,"text":"abelia"},...]

In exchange for a substantial jump in complexity, we can also use subqueries to return an entire object graph:

select row_to_json(t)from (  select text, pronunciation,    (      select array_to_json(array_agg(row_to_json(d)))      from (        select part_of_speech, body        from definitions        where word_id=words.id        order by position asc      ) d    ) as definitions  from words  where text = 'autumn'

This could return a result like the following:

{  "text": "autumn",  "pronunciation": "autumn",  "definitions": [    {        "part_of_speech": "noun",        "body": "skilder wearifully uninfolded..."    },    {        "part_of_speech": "verb",        "body": "intrafissural fernbird kittly..."    },    {        "part_of_speech": "adverb",        "body": "infrugal lansquenet impolarizable..."    }  ]}

Obviously, the SQL to generate this JSON response is far more verbose than generating it in Ruby. Let’s see what we get in exchange.

Benchmarks

I created a sample benchmark application to test multiple JSON generation approaches. The sample domain is a dictionary. The source is at https://github.com/JackC/json_api_bench.

The first test is of an extremely light weight auto-complete search. The result set is simply an array of strings. I tested three approaches: loading the entire ActiveRecord domain model, using pluck, and using PostgreSQL (view source).

+-----------------------------+----------+| Name                        | Reqs/Sec |+-----------------------------+----------+| Quick Search Domain         | 467.84   || Quick Search Pluck          | 496.89   || Quick Search PostgreSQL     | 540.54   |+-----------------------------+----------+

Pluck should probably be the preferred approach in this case. While PostgreSQL is about 8% faster, the code is less clear.

The next test is of a slightly richer word search. It returns an array of objects that each include text, pronunciation, part of speech, and definition (view source).

+-----------------------------+----------+| Name                        | Reqs/Sec |+-----------------------------+----------+| Rich Search Domain          | 322.58   || Rich Search Select All      | 418.85   || Rich Search PostgreSQL      | 500.00   |+-----------------------------+----------+

In this case, select_all should still usually be preferred over PostgreSQL. The loss of clarity is not worth the 19% performance increase.

Now we get to a test of an entire object graph for a word. This returns an object with text, pronunciation, an array of definitions, an array of quotes, an array of synonyms, and an array of antonyms (view source)

+-----------------------------+----------+| Name                        | Reqs/Sec |+-----------------------------+----------+| Definition Domain           | 130.72   || Definition PostgreSQL       | 457.14   |+-----------------------------+----------+

Now things start to get more favorable for PostgreSQL. In exchange for a substantial block of SQL we get a 3.51x throughput increase.

Finally, we run a test of returning multiple definitions per call. This is a more synthetic benchmark to exercise heavy weight API responses (view source).

+-----------------------------+----------+| Name                        | Reqs/Sec |+-----------------------------+----------+| Many Definitions Domain     | 25.82    || Many Definitions PostgreSQL | 330.58   |+-----------------------------+----------+

For a large JSON object graph PostgreSQL JSON generation can offer well over 12x the throughput.

Conclusions

PostgreSQL is always faster than traditional Rails JSON generation, but the code is always more verbose. For simple responses that do not involve nested objects, the performance gain is insufficient to warrant the loss in code clarity. As the object graph increases in size and complexity, the performance gains become more and more attractive.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,968评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,601评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,220评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,416评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,425评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,144评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,432评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,088评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,586评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,028评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,137评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,783评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,343评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,333评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,559评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,595评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,901评论 2 345

推荐阅读更多精彩内容