C++11之前,对代码有点追求的程序员,如果事先知道vector的大小,会预先reserve出确定的空间,代码如下:
#include <iostream>
#include <vector>
#include <string>
using namespace std;
class Student{
public:
Student() = default;
Student(string name): name_(name) {
cout << "ctor called" << endl;
}
Student(const Student& student): name_(student.name_) {
cout << "copy ctor called" << endl;
}
Student(const Student&& student): name_(student.name_) {
cout << "move ctor called" << endl;
}
~Student() = default;
private:
string name_;
};
int main() {
vector<Student> vec;
vec.reserve(4);
cout << "size: " << vec.size() << " , capacity: " << vec.capacity() << endl;
vec.push_back(Student("alice"));
cout << "size: " << vec.size() << " , capacity: " << vec.capacity() << endl;
vec.push_back(Student("bob"));
cout << "size: " << vec.size() << " , capacity: " << vec.capacity() << endl;
vec.push_back(Student("cindy"));
cout << "size: " << vec.size() << " , capacity: " << vec.capacity() << endl;
vec.push_back(Student("daisy"));
cout << "size: " << vec.size() << " , capacity: " << vec.capacity() << endl;
return 0;
}
输出:
$./a.out
size: 0 , capacity: 4
ctor called
move ctor called
size: 1 , capacity: 4
ctor called
move ctor called
size: 2 , capacity: 4
ctor called
move ctor called
size: 3 , capacity: 4
ctor called
move ctor called
size: 4 , capacity: 4
看上去不错了,每次通过ctor与move ctor即可构造出对象。
但在C++11后,引入了emplace_back,看一下cppreference的介绍:
Appends a new element to the end of the container. The element is constructed through std::allocator_traits::construct, which typically uses placement-new to construct the element in-place at the location provided by the container. The arguments args... are forwarded to the constructor as std::forward<Args>(args)....
If the new size() is greater than capacity() then all iterators and references (including the past-the-end iterator) are invalidated. Otherwise only the past-the-end iterator is invalidated.
看上去挺香的,可以直接在末尾构造出对象,并且使用的是placement-new操作符,就地(in-place)构造,并且使用了std::forward完美转发,需要注意的是最后一句,如果新的size大于capacity,则所有迭代器都会失效,因为这涉及到vector的扩容机制了,每次扩容时都会开辟一个新空间,再把原来的元素复制到新空间去,再回收原空间(详细过程可参考侯捷的STL源码剖析)
于是把代码修改为:
vector<Student> vec;
vec.reserve(4);
cout << "size: " << vec.size() << " , capacity: " << vec.capacity() << endl;
vec.emplace_back("alice");
cout << "size: " << vec.size() << " , capacity: " << vec.capacity() << endl;
vec.emplace_back("bob");
cout << "size: " << vec.size() << " , capacity: " << vec.capacity() << endl;
vec.emplace_back("cindy");
cout << "size: " << vec.size() << " , capacity: " << vec.capacity() << endl;
vec.emplace_back("daisy");
cout << "size: " << vec.size() << " , capacity: " << vec.capacity() << endl;
输出:
$./a.out
size: 0 , capacity: 4
ctor called
size: 1 , capacity: 4
ctor called
size: 2 , capacity: 4
ctor called
size: 3 , capacity: 4
ctor called
size: 4 , capacity: 4
可以看到,每次插入时,只需要一次构造,当元素数量很大时,这是一个很大的优化。
注意,不要像下面的这样调用emplace_back,否则前功尽弃了:
vector<Student> vec;
vec.reserve(4);
cout << "size: " << vec.size() << " , capacity: " << vec.capacity() << endl;
Student stu1 = Student("alice");
vec.emplace_back(stu1);
cout << "size: " << vec.size() << " , capacity: " << vec.capacity() << endl;
Student stu2 = Student("bob");
vec.emplace_back(stu2);
cout << "size: " << vec.size() << " , capacity: " << vec.capacity() << endl;
Student stu3 = Student("cindy");
vec.emplace_back(stu3);
cout << "size: " << vec.size() << " , capacity: " << vec.capacity() << endl;
Student stu4 = Student("daisy");
vec.emplace_back(stu4);
cout << "size: " << vec.size() << " , capacity: " << vec.capacity() << endl;
输出:
$./a.out
size: 0 , capacity: 4
ctor called
copy ctor called
size: 1 , capacity: 4
ctor called
copy ctor called
size: 2 , capacity: 4
ctor called
copy ctor called
size: 3 , capacity: 4
ctor called
copy ctor called
size: 4 , capacity: 4
这种代码并没有原地(in-place)构造对象,所以还是得经过copy ctor。