R语言--粒子群优化算法PSO

粒子群优化算法(Particle Swarm Optimization,简称PSO)是通过模拟鸟群捕食行为设计的一种群智能算法。本文介绍算法原理,R代码实现以及R包实现。

粒子群优化算法的基本思想:是通过群体中个体之间的协作和信息共享来寻找最优解。
PSO的优势在于简单容易实现并且没有许多参数的调节,广泛应用于函数优化、神经网络训练等领域。

算法原理

介绍

粒子群算法通过设计一种无质量的粒子来模拟鸟群中的鸟,粒子仅具有两个属性:速度和位置,速度代表移动的快慢,位置代表移动的方向。每个粒子在搜索空间中单独的搜寻最优解,并将其记为当前个体极值,并将个体极值与整个粒子群里的其他粒子共享,找到最优的那个个体极值作为整个粒子群的当前全局最优解,粒子群中的所有粒子根据自己找到的当前个体极值和整个粒子群共享的当前全局最优解来调整自己的速度和位置。下面的动图很形象地展示了PSO算法的过程:

sketch.gif

公式

PSO初始化为一群随机粒子,然后通过迭代找到最优解。在每一次的迭代中,粒子通过跟踪两个极值(pbest,gbest)来更新自己。在找到这两个最优值后,粒子通过下面的公式来更新自己的速度和位置。

速度更新公式

V_i=\omega\times V_i+c_1\times rand()\times (pbest_i-X_i)+c_2\times rand()\times (gbest-X_i)
其中:
\omega为惯性因子,数值范围为0到1之间;
V_i为第i个粒子的速度;
X_i为第i个粒子的位置;
c_1c_2为学习因子,通常为2;
rand()为0到1之间的随机数;
pbest_i为第i个粒子的历史最优位置;
gbest为粒子群的历史最优位置。

位置更新公式

X_i=X_i+V_i

流程图

flow.png

代码实现

用PSO算法解决一个实际的优化问题:
求解z=x^2+y^2x,y\in[-10,10]值域范围内的最小值。

  • 函数定义
# 目标函数(x输入长度为2的向量)
fit <- function(x)sum(x^2)
# 值域
lower <- -10
upper <- 10
  • 图像展示
library(plotly)
# 计算函数值矩阵
z <- apply(expand.grid(x=lower:upper,y=lower:upper),1,fit) %>% matrix(ncol = length(lower:upper))
# 3d展示
plot_ly(x=lower:upper,y=lower:upper,z=z) %>% add_surface()
3D.png

通过图像可知,该函数是一个“碗状”结构,在值域范围内有且只有一个最小值。

  • 粒子群初始化
# 初始粒子数量
n <- 20
# 速度最大值
vmax <- 2
# 惯性因子
w <- 1
# 学习因子
c1 <- c2 <- 2
# 随机数
r1 <- runif(1)
r2 <- runif(1)
# 适应度变化初始值
gBestDelta <- NULL
# 最佳适应度变化阈值
alpha <- 0.0001
# 粒子群迭代次数
iters <- 1000
# 随机位置矩阵 X
X <- data.frame(x=runif(n,-10,10),y=runif(n,-10,10)) %>% as.matrix()
# 随机速度矩阵 V
V <- data.frame(x=runif(n,-vmax,vmax),y=runif(n,-vmax,vmax)) %>% as.matrix()
# pBest初始设置为X
pBest <- X
# gBest初始设置 gBest=min{pBesti}
gBest <- pBest[which.min(apply(pBest,1,fit)),]
  • 粒子群迭代更新
# 结果向量
fitness <- c()
# 迭代
for(j in 1:iters){
  # 粒子群更新
  for(i in 1:n){
    # 粒子速度更新
    V[i,] <- w*V[i,]+c1*r1*(pBest[i,]-X[i,])+c2*r2*(gBest-X[i,]) 
    # 粒子速度约束(超过最大速度则设置为最大速度)
    V[i,V[i,]>vmax] <- vmax
    # 粒子位置更新
    X[i,] <- X[i,]+V[i,] 
    # 粒子pBest更新
    if(fit(X[i,]) < fit(pBest[i,])) pBest[i,] <- X[i,]
    # 粒子群gBest更新(全局解)
    if(fit(pBest[i,]) < fit(gBest)){
      gBestDelta <- abs(fit(gBest)-fit(pBest[i,])) # 粒子群适应度变化量
      gBest <- pBest[i,]
    } 
  }
  # 存储每次迭代的结果
  fitness[j] <- fit(gBest)
  # 达到阈值条件则结束
  if(!is.null(gBestDelta) & gBestDelta < alpha) break
}
  • 输出结果

从计算结果可知,最优解x和y都非常小,约等于0。同时,从图中可以看出,PSO在迭代几十次后,拟合度下降的非常快,之后几乎不再变化,算法很快找到了全局最优解。

print(gBest)
##           x           y 
## 0.010550688 0.009236431
plot(1:length(fitness),fitness,type="l",xlab="iters",ylab="fitness")
iters.png

R包实现

R中有第三方包实现PSO算法--pso,同样,用该包实现上述优化问题求解。

  • 安装包
install.packages("pso")
  • psoptim函数
library(pso)
psoptim(par = rep(NA,2),fn = fit,lower = -10,upper = 10)
## $par
## [1] -4.761513e-48  4.881461e-48
## 
## $value
## [1] 4.650066e-95
## 
## $counts
##  function iteration  restarts 
##     12000      1000         0 
## 
## $convergence
## [1] 2
## 
## $message
## [1] "Maximal number of iterations reached"

psoptm函数的计算结果可知,其中par表示计算参数结果,分别约等于0,value表示对于的优化函数值。更多的函数使用说明可以参考官方文档。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,214评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,307评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,543评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,221评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,224评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,007评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,313评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,956评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,441评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,925评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,018评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,685评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,234评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,240评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,464评论 1 261
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,467评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,762评论 2 345

推荐阅读更多精彩内容