用户画像与标签

本质

用户画像是对现实用户的数据建模 

标签是一个符号并且与业务紧密相连才有意义

标签的评判标准定义. 例如,假设我们有一个类目就是洗车,那很好办,如果用户下过洗车的单子,那么该用户就打上这个标签


谨记

构建用户画像,确定标签要与业务部门和产品部门共同商量确定,因为用户画像与业务紧密相连,标签体系是搜集所有业务方面的需求。

验证

验证需要两方面考究。第一,标签是否准确。第二,标签是否齐全。但是无法保证这两者100%符合,尤其是后者,因为业务不断变化,导致最多在一段时间内标签的齐全,抑或多数情况下标签是不齐全的。

所以我们通常判断的是准确性。准确性的判断有两类。第一类,以实时为依据,比如用户的性别,通过数据是可查究的。第二类,无事实为依据,比如用户的忠诚度,只有通过线上数据的A/B Test来对比验证。

①用户数据采集

多种数据源,不同终端(Web、App、H5、桌面软件)用户行为,后端系统日志(Web server Log),业务数据( DB ) 


②数据接入与存储

实时导入数据,数据格式从此统一、完备。先进的事件—用户数据模型,为分析用户行为提供坚实基础

③可视化查询与分析

多维事件分析、漏斗分析、留存分析、用户分群、行为轨迹分析和回访分析,不同分析模型帮助揭示数据背后的含义,深度解答各种问题。

支持将任何分析查询添加到数据概览。配置数据概览。


技术架构

海量日志(一般为流式数据,如,搜索引擎的pv,查询等)数据提取 Hadoop的Chukwa,Cloudera的Flume,FaceBook的Scribe

分布式数据存储技术 HBase 、HDFS

Sqoop  用于 Hadoop、Hive 与传统数据库 MySQL、Oracle之间数据转换

Hive、SparkSQL、MapReduce处理数据数据分析、挖掘

Storm、Spark等实时技术 流式数据处理

Karmasphere 数据查询和呈现

R取样本,假设检验,做回归

机器算法  聚类 KMeans  DBscan    分类和回归 贝叶斯算法    预测 Boosting,Bagging


技术架构

实施方法论


实施方法论





最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容