波动方程和退化波动方程
波动方程可能是最重要的一种偏微分方程,在三维空间的基本形式是。18世纪已引入波动方程,并用球坐标表示了。19世纪发现了波动方程的新用途,特别是萌芽时期的弹性领域:包括各种形状的固体在不同的初始条件和边界条件下的振动,波在弹性体中的传播,以及声和光的传播问题。
变量可分离时,解波动方程的技巧类似傅里叶解热方程、或者拉梅用曲线坐标系表示位势方程。Mathieu用曲线坐标变量分离后解得波动方程是其中的典型。还有一类方法是把方程作为整体,第一个主要成果是关于论述初值问题的。泊松在1808-1819年间研究波动方程,得到了关于波u(x,y,z,t)的传播公式、
其中θ和Φ是普通球坐标,积分区域是以坐标为(x,y,z)的P点为中心,以at为半径的球Sat的表面。这个结果意味着,假如初始扰动是由边界为S的物体V发出,使Φ0和Φ1定义在V上,并在V外为0,那么初始扰动在V上被局部化了。这个公式告诉我们在V外任意点P(x,y,z)处波的传播情况,令d,D分别表示P到V上的点的最小距离和最大距离,当t<d/a时,积分为0,即从S扩展出来的波的波前还没有到达P,t=d/a时,球Sat刚接触S,从S出发的波刚到达P,t在d/a~D/a区间时,球Sat交割V,t=D/a时,波的尾缘通过P,最后t>D/a时,V在球Sat内部,初始扰动已经离开了P。波的前缘是中心在S,半径为at的一族球面的包络,区分了扰动已到达的点和尚未到达的点,波的后缘是一个曲面,区分了存在扰动的点和扰动已离开的点,由此可见在空间局部化的扰动在每一点P引起的效果仅持续有限时间。此外这个波有前缘和后缘,这个现象称为惠更斯原理。
黎曼在研究有限振幅声波传播时建立了解波动方程初值问题的另一个方法。他考虑如下二阶线性微分方程:
已知沿曲线Γ的u和u对法向的偏导数(即知道u对x,y的偏导数),要求在任意P点处的u。黎曼的方法是先找函数v(也称为黎曼函数或特征函数),使其满足共轭方程和其它条件。
在P点处黎曼引入x=ξ上的线段PP2和y=η上的线段PP1,将广义格林定理(二维情形)用于微分表示式L(u),最后得到任意点P处的u值:
黎曼方法把原来关于u的初值问题变成关于v的初值问题(变成较容易求的),黎曼在他研究的物理问题中很容易找到v,但v的存在性一般不是由黎曼证明的。这个方法仅适用于二元波动方程(双曲方程),不能直接推广,如果推广到二个以上独立变量,那么黎曼函数在积分区域边界上变为奇异,积分发散,难以处理。这个方法后来得到了推广,但同时增加了复杂性。
稳态问题也推进了用其它方法解波动方程的进展,产生了简化的波动方程。波动方程形式上包含时间变量,比如对于简单谐波,假设u=w(x,y,z)e^(ikt),代入波动方程则得到:,称为退化波动方程或亥姆霍兹方程,表示所有调和的、声音的、弹性的、电磁学的波,别人找特殊积分就完事了,但亥姆霍兹(1821-1894)在研究一端开放管道内的空气振动时,给出了第一个关于这个方程解的普遍性结论。他关注传音问题,其中w是作谐振动气体的速度势,k是由空气弹性和振动频率确定的常数,λ是波长=2π/k,他用格林定理证明方程任一个在给定区域内的连续解可以表示为区域表面激发点的单层和双层效应,把e^(-ikr)/4πr作为格林定理中的一个函数,他得到区域内任一点P处的w:
19世纪的德国著名数学物理学家G.R.基尔霍夫(Gustav Robert Kirchhoff,1824~1887)用亥姆霍兹的工作求得波动方程处置问题的另一个解,把上式改写为:
令Φ(t)为u在时刻r时边界上任一点(x,y,z)处的值,f(r)是u对法向n的偏导,基尔霍夫证明:
即在P处的u就用u和u对n的偏导在较早时刻围绕P点的闭曲面上的值表出,这个结果称为声学的惠更斯原理,是泊松公式的推广。
之前提到黎曼用了稍微广义的格林定理,用到共轭微分方程的格林定理的完全推广也称为格林定理,由杜·布瓦一雷蒙(Du Bois-Reymond,1831-1889)和达布(Darboux,1842-1917)分别提出,二者都引用了黎曼1858/1859的论文。给定方程:
得到广义的格林定理:,其中重积分展布于R的内部,单积分展布于R的边界,并得到M(v)和P,Q的表达式。其中M(v)是L(u)的共轭表达式,M(v)=0是共轭微分方程。
格林定理可以求某些偏微分方程的解,例如椭圆型方程总能写成形如L(u)的形式,由此可得共轭微分方程M(v)=0,解v在任意点(ξ,η)像对数那样变为无穷,性态等同于v=Ulogr+V,r是点(ξ,η)到(x,y)的距离,U,V在所考虑的区域R内连续,且U为标准化的,即U(ξ,η)=1。把(ξ,η)包围在一个圆内并剔出积分区域,当圆收缩到(ξ,η)时有
解得函数v称为格林函数,当我们知道v,以及边界给定u和u对n的偏导,u就可以表示为单积分。常常把v在R的边界上为0的条件附加到格林函数的定义中,格林定理的用法已发展到各种特殊情形和各种推广。