实战word2vec

# -*- coding:utf-8 -*-
import tensorflow as tf
import numpy as np
import math
import collections
import pickle as pkl
import jieba
import os


class word2vec():
    def __init__(self,
                 vocab_list=None,
                 embedding_size=200,
                 win_len=3,  # 单边窗口长
                 num_sampled=1000,
                 learning_rate=1.0,
                 logdir='/tmp/simple_word2vec',
                 model_path=None
                 ):

        # 获得模型的基本参数
        self.batch_size = None  # 一批中数据个数, 目前是根据情况来的
        if model_path != None:
            self.load_model(model_path)
        else:
            # model parameters
            assert type(vocab_list) == list
            self.vocab_list = vocab_list
            self.vocab_size = vocab_list.__len__()
            self.embedding_size = embedding_size
            self.win_len = win_len
            self.num_sampled = num_sampled
            self.learning_rate = learning_rate
            self.logdir = logdir

            self.word2id = {}  # word => id 的映射
            for i in range(self.vocab_size):
                self.word2id[self.vocab_list[i]] = i

            # train times
            self.train_words_num = 0  # 训练的单词对数
            self.train_sents_num = 0  # 训练的句子数
            self.train_times_num = 0  # 训练的次数(一次可以有多个句子)

            # train loss records
            self.train_loss_records = collections.deque(maxlen=10)  # 保存最近10次的误差
            self.train_loss_k10 = 0

        self.build_graph()
        self.init_op()
        if model_path != None:
            tf_model_path = os.path.join(model_path, 'tf_vars')
            self.saver.restore(self.sess, tf_model_path)

    def init_op(self):
        self.sess = tf.Session(graph=self.graph)
        self.sess.run(self.init)

    def build_graph(self):
        self.graph = tf.Graph()
        with self.graph.as_default():
            self.train_inputs = tf.placeholder(tf.int32, shape=[self.batch_size])
            self.train_labels = tf.placeholder(tf.int32, shape=[self.batch_size, 1])
            self.embedding_dict = tf.Variable(
                tf.random_uniform([self.vocab_size, self.embedding_size], -1.0, 1.0)
            )
            self.nce_weight = tf.Variable(tf.truncated_normal([self.vocab_size, self.embedding_size],
                                                              stddev=1.0 / math.sqrt(self.embedding_size)))
            self.nce_biases = tf.Variable(tf.zeros([self.vocab_size]))

            # 将输入序列向量化
            embed = tf.nn.embedding_lookup(self.embedding_dict, self.train_inputs)  # batch_size

            # 得到NCE损失
            self.loss = tf.reduce_mean(
                tf.nn.nce_loss(
                    weights=self.nce_weight,
                    biases=self.nce_biases,
                    labels=self.train_labels,
                    inputs=embed,
                    num_sampled=self.num_sampled,
                    num_classes=self.vocab_size
                )
            )

            # 根据 nce loss 来更新梯度和embedding
            self.train_op = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(self.loss)  # 训练操作

            # 计算与指定若干单词的相似度
            self.test_word_id = tf.placeholder(tf.int32, shape=[None])
            vec_l2_model = tf.sqrt(  # 求各词向量的L2模
                tf.reduce_sum(tf.square(self.embedding_dict), 1, keep_dims=True)
            )

            self.normed_embedding = self.embedding_dict / vec_l2_model
            # self.embedding_dict = norm_vec # 对embedding向量正则化
            test_embed = tf.nn.embedding_lookup(self.normed_embedding, self.test_word_id)
            self.similarity = tf.matmul(test_embed, self.normed_embedding, transpose_b=True)

            # 变量初始化
            self.init = tf.global_variables_initializer()

            self.saver = tf.train.Saver()

    def train_by_sentence(self, input_sentence=[]):
        #  input_sentence: [sub_sent1, sub_sent2, ...]
        # 每个sub_sent是一个单词序列,例如['这次','大选','让']
        sent_num = input_sentence.__len__()
        batch_inputs = []
        batch_labels = []
        for sent in input_sentence:
            for i in range(sent.__len__()):
                start = max(0, i - self.win_len)
                end = min(sent.__len__(), i + self.win_len + 1)
                for index in range(start, end):
                    if index == i:
                        continue
                    else:
                        input_id = self.word2id.get(sent[i])
                        label_id = self.word2id.get(sent[index])
                        if not (input_id and label_id):
                            continue
                        batch_inputs.append(input_id)
                        batch_labels.append(label_id)
        if len(batch_inputs) == 0:
            return
        batch_inputs = np.array(batch_inputs, dtype=np.int32)
        batch_labels = np.array(batch_labels, dtype=np.int32)
        batch_labels = np.reshape(batch_labels, [batch_labels.__len__(), 1])

        feed_dict = {
            self.train_inputs: batch_inputs,
            self.train_labels: batch_labels
        }
        #_, loss_val, summary_str = self.sess.run([self.train_op, self.loss, self.merged_summary_op], feed_dict=feed_dict)
        loss_val = self.sess.run([ self.loss], feed_dict = feed_dict)
        # train loss
        self.train_loss_records.append(loss_val)
        #self.train_loss_k10 = sum(self.train_loss_records)/self.train_loss_records.__len__()
        self.train_loss_k10 = np.mean(self.train_loss_records)
        if self.train_sents_num % 1000 == 0:
            print("{a} sentences dealed, loss: {b}"
                  .format(a=self.train_sents_num, b=self.train_loss_k10))

        # train times
        self.train_words_num += batch_inputs.__len__()
        self.train_sents_num += input_sentence.__len__()
        self.train_times_num += 1

    def cal_similarity(self, test_word_id_list, top_k=10):
        sim_matrix = self.sess.run(self.similarity, feed_dict={self.test_word_id: test_word_id_list})
        sim_mean = np.mean(sim_matrix)
        sim_var = np.mean(np.square(sim_matrix - sim_mean))
        test_words = []
        near_words = []
        for i in range(test_word_id_list.__len__()):
            test_words.append(self.vocab_list[test_word_id_list[i]])
            nearst_id = (-sim_matrix[i, :]).argsort()[1:top_k + 1]
            nearst_word = [self.vocab_list[x] for x in nearst_id]
            near_words.append(nearst_word)
        return test_words, near_words, sim_mean, sim_var

    def save_model(self, save_path):

        if os.path.isfile(save_path):
            raise RuntimeError('the save path should be a dir')
        if not os.path.exists(save_path):
            os.mkdir(save_path)

        # 记录模型各参数
        model = {}
        var_names = ['vocab_size',  # int       model parameters
                     'vocab_list',  # list
                     'learning_rate',  # int
                     'word2id',  # dict
                     'embedding_size',  # int
                     'logdir',  # str
                     'win_len',  # int
                     'num_sampled',  # int
                     'train_words_num',  # int       train info
                     'train_sents_num',  # int
                     'train_times_num',  # int
                     'train_loss_records',  # int   train loss
                     'train_loss_k10',  # int
                     ]
        for var in var_names:
            model[var] = eval('self.' + var)

        param_path = os.path.join(save_path, 'params.pkl')
        if os.path.exists(param_path):
            os.remove(param_path)
        with open(param_path, 'wb') as f:
            pkl.dump(model, f)

        # 记录tf模型
        tf_path = os.path.join(save_path, 'tf_vars')
        if os.path.exists(tf_path):
            os.remove(tf_path)
        self.saver.save(self.sess, tf_path)

    def load_model(self, model_path):
        if not os.path.exists(model_path):
            raise RuntimeError('file not exists')
        param_path = os.path.join(model_path, 'params.pkl')
        with open(param_path, 'rb') as f:
            model = pkl.load(f)
            self.vocab_list = model['vocab_list']
            self.vocab_size = model['vocab_size']
            self.logdir = model['logdir']
            self.word2id = model['word2id']
            self.embedding_size = model['embedding_size']
            self.learning_rate = model['learning_rate']
            self.win_len = model['win_len']
            self.num_sampled = model['num_sampled']
            self.train_words_num = model['train_words_num']
            self.train_sents_num = model['train_sents_num']
            self.train_times_num = model['train_times_num']
            self.train_loss_records = model['train_loss_records']
            self.train_loss_k10 = model['train_loss_k10']


if __name__ == '__main__':

    # step 1 读取停用词
    stop_words = []
    with open('stop_words.txt', encoding='utf-8') as f:
        line = f.readline()
        while line:
            stop_words.append(line[:-1])
            line = f.readline()
    stop_words = set(stop_words)
    print('停用词读取完毕,共{n}个单词'.format(n=len(stop_words)))

    # step2 读取文本,预处理,分词,得到词典
    raw_word_list = []
    sentence_list = []
    with open('2800.txt', encoding='gbk') as f:
        line = f.readline()
        while line:
            while '\n' in line:
                line = line.replace('\n', '')
            while ' ' in line:
                line = line.replace(' ', '')
            if len(line) > 0:  # 如果句子非空
                raw_words = list(jieba.cut(line, cut_all=False))
                dealed_words = []
                for word in raw_words:
                    if word not in stop_words and word not in ['qingkan520', 'www', 'com', 'http']:
                        raw_word_list.append(word)
                        dealed_words.append(word)
                sentence_list.append(dealed_words)
            line = f.readline()
    word_count = collections.Counter(raw_word_list)
    print('文本中总共有{n1}个单词,不重复单词数{n2},选取前30000个单词进入词典'
          .format(n1=len(raw_word_list), n2=len(word_count)))
    word_count = word_count.most_common(30000)
    word_list = [x[0] for x in word_count]

    # 创建模型,训练
    w2v = word2vec(vocab_list=word_list,  # 词典集
                   embedding_size=200,
                   win_len=2,
                   learning_rate=1,
                   num_sampled=100,  # 负采样个数
                   #logdir='/tmp/280'
                    )  # tensorboard记录地址

    num_steps = 10000
    for i in range(num_steps):
        # print (i%len(sentence_list))
        sent = sentence_list[i % len(sentence_list)]
        w2v.train_by_sentence([sent])
    w2v.save_model('model')

    w2v.load_model('model')
    test_word = ['天地', '级别']
    test_id = [word_list.index(x) for x in test_word]
    # print('test_id', test_id)
    test_words, near_words, sim_mean, sim_var = w2v.cal_similarity(test_id)
    print(test_words, near_words, sim_mean, sim_var)


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,905评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,140评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,791评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,483评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,476评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,516评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,905评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,560评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,778评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,557评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,635评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,338评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,925评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,898评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,142评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,818评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,347评论 2 342

推荐阅读更多精彩内容