基于大数据的用户画像构建(理论篇)

什么是用户画像?

简而言之,用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。构建用户画像的核心工作即是给用户贴“标签”,而标签是通过对用户信息分析而来的高度精炼的特征标识。

举例来说,如果你经常购买一些玩偶玩具,那么电商网站即可根据玩具购买的情况替你打上标签“有孩子”,甚至还可以判断出你孩子大概的年龄,贴上“有 5-10 岁的孩子”这样更为具体的标签,而这些所有给你贴的标签统在一次,就成了你的用户画像,因此,也可以说用户画像就是判断一个人是什么样的人。

除去“标签化”,用户画像还具有的特点是“低交叉率”,当两组画像除了权重较小的标签外其余标签几乎一致,那就可以将二者合并,弱化低权重标签的差异。

用户画像的作用

罗振宇在《时间的朋友》跨年演讲上举了这样一个例子:当一个坏商家掌握了你的购买数据,他就可以根据你平常购买商品的偏好来决定是给你发正品还是假货以提高利润。且不说是否存在这情况,但这也说明了利用用户画像可以做到“精准销售”,当然了,这是极其错误的用法。

其作用大体不离以下几个方面:

  1. 精准营销,分析产品潜在用户,针对特定群体利用短信邮件等方式进行营销;
  2. 用户统计,比如中国大学购买书籍人数 TOP10,全国分城市奶爸指数;
  3. 数据挖掘,构建智能推荐系统,利用关联规则计算,喜欢红酒的人通常喜欢什么运动品牌,利用聚类算法分析,喜欢红酒的人年龄段分布情况;
  4. 进行效果评估,完善产品运营,提升服务质量,其实这也就相当于市场调研、用户调研,迅速下定位服务群体,提供高水平的服务;
  5. 对服务或产品进行私人定制,即个性化的服务某类群体甚至每一位用户(个人认为这是目前的发展趋势,未来的消费主流)。比如,某公司想推出一款面向 5-10 岁儿童的玩具,通过用户画像进行分析,发现形象=“喜羊羊”、价格区间=“中等”的偏好比重最大,那么就给新产品提供类非常客观有效的决策依据。
  6. 业务经营分析以及竞争分析,影响企业发展战略

构建流程

Paste_Image.png

数据收集

数据收集大致分为网络行为数据、服务内行为数据、用户内容偏好数据、用户交易数据这四类。

  • 网络行为数据:活跃人数、页面浏览量、访问时长、激活率、外部触点、社交数据等
  • 服务内行为数据:浏览路径、页面停留时间、访问深度、唯一页面浏览次数等
  • 用户内容便好数据:浏览/收藏内容、评论内容、互动内容、生活形态偏好、品牌偏好等
  • 用户交易数据(交易类服务):贡献率、客单价、连带率、回头率、流失率等
    当然,收集到的数据不会是 100% 准确的,都具有不确定性,这就需要在后面的阶段中建模来再判断,比如某用户在性别一栏填的男,但通过其行为偏好可判断其性别为“女”的概率为 80%。

还得一提的是,储存用户行为数据时最好同时储存下发生该行为的场景,以便更好地进行数据分析。

行为建模

该阶段是对上阶段收集到数据的处理,进行行为建模,以抽象出用户的标签,这个阶段注重的应是大概率事件,通过数学算法模型尽可能地排除用户的偶然行为。

这时也要用到机器学习,对用户的行为、偏好进行猜测,好比一个 y=kx+b 的算法,X 代表已知信息,Y 是用户偏好,通过不断的精确 k 和 b 来精确 Y。

在这个阶段,需要用到很多模型来给用户贴标签。

  • 用户汽车模型
    根据用户对“汽车”话题的关注或购买相关产品的情况来判断用户是否有车、是否准备买车
  • 用户忠诚度模型
    通过判断+聚类算法判断用户的忠诚度
  • 身高体型模型
    根据用户购买服装鞋帽等用品判断
  • 文艺青年模型
    根据用户发言、评论等行为判断用户是否为文艺青年
  • 用户价值模型
    判断用户对于网站的价值,对于提高用户留存率非常有用(电商网站一般使用 RFM 实现)
    还有消费能力、违约概率、流失概率等等诸多模型。

用户画像基本成型

该阶段可以说是二阶段的一个深入,要把用户的基本属性(年龄、性别、地域)、购买能力、行为特征、兴趣爱好、心理特征、社交网络大致地标签化。

为什么说是基本成型?因为用户画像永远也无法 100% 地描述一个人,只能做到不断地去逼近一个人,因此,用户画像既应根据变化的基础数据不断修正,又要根据已知数据来抽象出新的标签使用户画像越来越立体。

关于“标签化”,一般采用多级标签、多级分类,比如第一级标签是基本信息(姓名、性别),第二级是消费习惯、用户行为;第一级分类有人口属性,人口属性又有基本信息、地理位置等二级分类,地理位置又分工作地址和家庭地址的三级分类。

数据可视化分析

这是把用户画像真正利用起来的一步,在此步骤中一般是针对群体的分析,比如可以根据用户价值来细分出核心用户、评估某一群体的潜在价值空间,以作出针对性的运营。
如图:


Paste_Image.png

后记

这里只写了用户画像的构建流程和一些原理,下次有时间我会写篇关于大数据平台的实践文章,并说一下一些行为模型的算法原理,有兴趣的朋友可以关注下。

参考阅读:
[1]永洪BI:手把手教您搞定用户画像
[2]易观智库:大数据下的用户分析(PPT)
[3]杨步涛:基于用户画像的大数据挖掘实践
[4]慕课网:电商大数据应用之用户画像
[5]知乎:Alex Chu 关于用户画像的回答

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,482评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,377评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,762评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,273评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,289评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,046评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,351评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,988评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,476评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,948评论 2 324
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,064评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,712评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,261评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,264评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,486评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,511评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,802评论 2 345

推荐阅读更多精彩内容