1.扩展缩放 cv2.resize()
只是改变图像的尺寸大小,cv2.resize()可以实现这个功能。在缩放时推荐cv2.INTER_AREA,在拓展时推荐cv2.INTER_CUBIC(慢)和cv2.INTER_LINEAR。默认情况下所有改变图像尺寸大小的操作使用的是插值法都是cv2.INTER_LINEAR。
import cv2
img = cv2.imread('shanghai.jpg')
#下面的None本应该是输出图像的尺寸,但是因为后面我们设置了缩放因子,所以,这里为None
res = cv2.resize(img,None,fx=2,fy=2,interpolation=cv2.INTER_CUBIC)
#or 这里直接设置输出图像的尺寸,所以不用设置缩放因子
height , width =img.shape[:2]
res = cv2.resize(img,(2*width,2*height),interpolation=cv2.INTER_CUBIC)
while(1):
cv2.imshow('res',res)
cv2.imshow('img',img)
if cv2.waitKey(1)&0xFF == 27:
break
cv2.destroyAllWindows()
2.平移 cv2.warpAffine()
如果想要沿(x,y)方向移动,移动的距离为(tx,ty)可以以下面方式构建移动矩阵。
可以使用Numpy数组构建矩阵,数据类型是np.float32,然后传给函数cv2.warpAffine().
以下的例子,像素被移动了(100,50)
img = cv2.imread('color2_small.jpg',0)
rows,cols = img.shape
M = np.float32([[1,0,100],[0,1,50]])
dst = cv2.warpAffine(img,M,(cols,rows))
titles = ['original image','dst']
images = [img,dst]for i in range(2):
plt.subplot(2,1,i+1),plt.imshow(images[i],'gray')
plt.title(titles[i]) plt.xticks([]),plt.yticks([])
plt.show()
PS:函数cv2.warpAffine() 的第三个参数的是输出图像的大小,它的格式应该是图像的(宽,高)。应该记住的是图像的宽对应的是列数,高对应的是行数。
3.旋转 cv2.getRotationMatrix2D()
对一个图像旋转角度θ,需要使用下面的旋转矩阵。
但OpenCVC允许在任意地方进行旋转,所以矩阵应该为
其中α = scale · cos θ
为构建旋转矩阵,OpenCV提供了一个函数cv2.getRotationMatrix2D。
例:旋转45度
#这里的第一个参数为旋转中心,第二个为旋转角度,第三个为旋转后的缩放因子 #可以通过设置旋转中心,缩放因子以及窗口大小来防止旋转后超出边界的问题。
M = cv2.getRotationMatrix2D((cols/2,rows/2),45,1)
dst = cv2.warpAffine(img,M,(cols,rows))
4.仿射变换 cv2.getAffineTransForm()
在仿射变换中,原图中所有平行线在结果图像中同样平行。为创建这个矩阵,需要从原图像中找到三个点以及他们在输出图像中的位置,然后cv2.getAffineTransForm()会创建一个2X3的矩阵。最后这个矩阵会被传给函数cv2.warpAffine()
img = cv2.imread('color2_small.jpg')
rows,cols,ch = img.shape
pts1 = np.float32([[50,50],[200,50],[50,200]])
pts2 = np.float32([[10,100],[200,50],[100,250]])
M = cv2.getAffineTransform(pts1,pts2)
dst = cv2.warpAffine(img,M,(cols,rows))
plt.subplot(121),plt.imshow(img),plt.title('Input')
plt.subplot(122),plt.imshow(dst),plt.title('Output')
plt.show()
5.透视变换 cv2.warpPerspective()
对于视角变换,我们需要一个3x3变换矩阵。在变换前后直线还是直线。需要在原图上找到4个点,以及他们在输出图上对应的位置,这四个点中任意三个都不能共线,可以有函数cv2.getPerspectiveTransform()构建,然后这个矩阵传给函数cv2.warpPerspective()
pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]])
pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]])
M = cv2.getPerspectiveTransform(pts1,pts2)
dst = cv2.warpPerspective(img,M,(300,300))
PS:cv2.warpaffine和cv2.warpervience,您可以使用它们进行各种转换。cv2.warpaffine采用2×3变换矩阵,而cv2.warppervieve采用3×3变换矩阵作为输入