Spark 2.0 DataFrame map操作中Unable to find encoder for type stored in a Dataset.问题的分析与解决

摘自:http://blog.csdn.net/sparkexpert/article/details/52871000
还可以参看:https://stackoverflow.com/questions/39517980/spark-error-unable-to-find-encoder-for-type-stored-in-a-dataset
随着新版本的Spark已经逐渐稳定,最近拟将原有框架升级到spark 2.0。还是比较兴奋的,特别是SQL的速度真的快了许多。。

然而,在其中一个操作时却卡住了。主要是dataframe.map操作,这个之前在spark 1.X是可以运行的,然而在spark 2.0上却无法通过。。

看了提醒的问题,主要是:
******error: Unable to find encoder for type stored in a Dataset. Primitive types (Int, String, etc) and Product types (case classes) are supported by importing spark.implicits._ Support for serializing other types will be added in future releases. resDf_upd.map(row => {******

针对这个问题,网上所得获取的资料还真不多。不过想着肯定是dataset统一了datframe与rdd之后就出现了新的要求。

经过查看spark官方文档,对spark有了一条这样的描述。

Dataset is Spark SQL’s strongly-typed API for working with structured data, i.e. records with a known schema.

Datasets are lazy and structured query expressions are only triggered when an action is invoked. Internally, aDataset
represents a logical plan that describes the computation query required to produce the data (for a givenSpark SQL session).

A Dataset is a result of executing a query expression against data storage like files, Hive tables or JDBC databases. The structured query expression can be described by a SQL query, a Column-based SQL expression or a Scala/Java lambda function. And that is why Dataset operations are available in three variants.

从这可以看出,要想对dataset进行操作,需要进行相应的encode操作。特别是官网给的例子

// No pre-defined encoders for Dataset[Map[K,V]], define explicitlyimplicit val mapEncoder = org.apache.spark.sql.Encoders.kryo[Map[String, Any]]// Primitive types and case classes can be also defined as// implicit val stringIntMapEncoder: Encoder[Map[String, Any]] = ExpressionEncoder()// row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]teenagersDF.map(teenager => teenager.getValuesMapAny)).collect()// Array(Map("name" -> "Justin", "age" -> 19))

从这看出,要进行map操作,要先定义一个Encoder。。

这就增加了系统升级繁重的工作量了。为了更简单一些,幸运的dataset也提供了转化RDD的操作。因此只需要将之前dataframe.map

在中间修改为:dataframe.rdd.map即可。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容