动态规划算法秘籍

本文来自通俗易懂算法入门书《趣学算法》。

动态规划是1957年理查德·贝尔曼在《Dynamic Programming》一书中提出来的,八卦一下,这个人可能有同学不知道,但他的一个算法你可能听说过,他和莱斯特·福特一起提出了求解最短路径的Bellman-Ford 算法,该算法解决了Dijkstra算法不能处理负权值边的问题。

Dynamic Programming,这里的Programming不是编程的意思,而是指一种表格处理法。我们把每一步得到的子问题结果存储在表格里,每次遇到该子问题时不需要再求解一遍,只需要查询表格即可。

4.1.1 算法思想

动态规划也是一种分治思想,但与分治算法不同的是,分治算法是把原问题分解为若干子问题,自顶向下,求解各子问题,合并子问题的解从而得到原问题的解。动态规划也是把原问题分解为若干子问题,然后自底向上,先求解最小的子问题,把结果存储在表格中,在求解大的子问题时,直接从表格中查询小的子问题的解,避免重复计算,从而提高算法效率。

4.1.2 算法要素

什么问题可以使用动态规划呢?我们首先要分析问题是否具有以下两个性质:

(1)最优子结构

最优子结构性质是指问题的最优解包含其子问题的最优解。最优子结构是使用动态规划的最基本条件,如果不具有最优子结构性质就不可以使用动态规划解决。

(2)子问题重叠

子问题重叠是指在求解子问题的过程中,有大量的子问题是重复的,那么只需要求解一次,然后把结果存储在表中,以后使用时可以直接查询,不需要再次求解。子问题重叠不是使用动态规划的必要条件,但问题存在子问题重叠更能够充分彰显动态规划的优势。

什么问题可以使用动态规划呢?我们首先要分析问题是否具有以下两个性质:

(1)最优子结构

最优子结构性质是指问题的最优解包含其子问题的最优解。最优子结构是使用动态规划的最基本条件,如果不具有最优子结构性质就不可以使用动态规划解决。

(2)子问题重叠

子问题重叠是指在求解子问题的过程中,有大量的子问题是重复的,那么只需要求解一次,然后把结果存储在表中,以后使用时可以直接查询,不需要再次求解。子问题重叠不是使用动态规划的必要条件,但问题存在子问题重叠更能够充分彰显动态规划的优势。

4.1.1 解题秘籍

遇到一个实际问题,如何采用动态规划来解决呢?

(1) 分析最优解的结构特征。

(2) 建立最优值的递归式。

(3) 自底向上计算最优值,并记录。

(4) 构造最优解。

本章通过8个实例,讲解了动态规划的解题过程。动态规划求解最优化问题时需要考虑两个性质:最优子结构和子问题重叠,只要满足最优子结构性质就可以使用动态规划,如果还具有子问题重叠,则更能彰显动态规划的优势。判断可以使用动态规划后,就可以分析其最优子结构特征,找到原问题和子问题的关系,从而得到最优解递归式。然后按照最优解递归式自底向上求解,采用备忘机制(查表法)有效解决子问题重叠,重复的子问题不需要重复求解,只需查表即可。

动态规划的关键:

(1)最优子结构判定

a. 作出一个选择;

b. 假定已经知道了哪种选择是最优的;

例如矩阵连乘问题,我们假设已经知道在第k个矩阵加括号是最优的,即(AiAi+1…Ak)(Ak+1Ak+2…Aj)。

c. 最优选择后会产生哪些子问题;

例如矩阵连乘问题,我们作出最优选择后产生两个子问题:(AiAi+1…Ak),(Ak+1Ak+2…Aj)。

d. 证明原问题的最优解包含其子问题的最优解。

通常使用“剪切—粘贴”反证法。证明如果原问题的解是最优解,那么子问题的解也是最优解。反证:假定子问题的解不是最优解,那么就可以将它“剪切”掉,把最优解“粘贴”进去,从而得到一个比原问题最优解更优的解,这与前提原问题的解是最优解矛盾。得证。

例如:矩阵连乘问题,c=a+b+d,我们只需要证明如果c是最优的,则a和b一定是最优的(即原问题的最优解包含子问题的最优解)。

反证法:如果a不是最优的,(AiAi+1…Ak) 存在一个最优解aˊ,aˊ

(2)如何得到最优解递归式

a.分析原问题最优解和子问题最优解的关系;

例如矩阵连乘问题,我们假设已经知道在第k个矩阵加括号是最优的,即(AiAi+1…Ak)(Ak+1Ak+2…Aj)。作出最优选择后产生两个子问题:(AiAi+1…Ak),(Ak+1Ak+2…Aj)。如果我们用m[i][j]表示AiAi+1…Aj矩阵连乘的最优解,那么两个子问题:(AiAi+1…Ak),(Ak+1Ak+2…Aj)对应的最优解分别是m[i][k],m[k+1][j]。剩下的只需要考察(AiAi+1…Ak)和(Ak+1Ak+2…Aj)的结果矩阵相乘的乘法次数了。两个结果矩阵相乘的乘法次数是pi*pk+1*qj。

因此,原问题最优解和子问题最优解的关系:m[i][j]= m[i][k]+m[k+1][j]+ pi*pk+1*qj

b.考察有多少种选择;

实质上,我们并不知道哪种选择是最优的,因此就需要考察有多少种选择,然后从这些选择中找到最优解。

例如矩阵连乘问题,加括号的位置k(AiAi+1…Ak)(Ak+1Ak+2…Aj),k的取值范围是{i,i+1,…,j-1},即i≤k

c.得到最优解递归式。

例如矩阵连乘问题,m[i][j]表示AiAi+1…Aj矩阵连乘的最优解,根据最优解和子问题最优解的关系,并考察所有的选择,找到最小值就是我们要的最优解。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容

  • 动态规划(Dynamic Programming) 本文包括: 动态规划定义 状态转移方程 动态规划算法步骤 最长...
    廖少少阅读 3,252评论 0 18
  • 《算法导论》这门课的老师是黄刘生和张曙,两位都是老人家了,代课很慢很没有激情,不过这一章非常有意思。更多见:iii...
    mmmwhy阅读 5,252评论 5 31
  • 引言:马上期末考试了,最近在复习计算机算法分析与程序设计;动态规划,这门课程中最难的几个部分之一,上课老师讲时自己...
    cp_insist阅读 5,178评论 0 3
  • 目录 动态规划与分治法 2.动态规划求解的最优化问题应该具备的两个要素2.1 最优子结构2.2 子问题重叠 动态规...
    王侦阅读 1,364评论 0 1
  • 获取到三方apk,想获取到apk包名类名: 方法一:copy apk文件到adt的build-tools下,And...
    坚持啊小伙子阅读 4,176评论 0 0