155、Spark内核原理进阶之cogroup算子内部实现原理

首先看一段代码

    public static void cogroup2() {
        // 创建SparkConf
        SparkConf sparkConf = new SparkConf().setAppName("cogroupJava").setMaster("local");
        // 创建JavaSparkContext
        JavaSparkContext javaSparkContext = new JavaSparkContext(sparkConf);

        // 创建集合
        List<Tuple2<String, Integer>> words1 = Arrays.asList(
                new Tuple2<String, Integer>("hello", 1),
                new Tuple2<String, Integer>("hello", 1),
                new Tuple2<String, Integer>("world", 1),
                new Tuple2<String, Integer>("hello", 1),
                new Tuple2<String, Integer>("you", 1)
        );

        List<Tuple2<String, Integer>> words2 = Arrays.asList(
                new Tuple2<String, Integer>("hello", 1),
                new Tuple2<String, Integer>("world", 1),
                new Tuple2<String, Integer>("hello", 1),
                new Tuple2<String, Integer>("you", 1)
        );


        // 并行化集合,创建初始化RDD
        JavaPairRDD<String, Integer> words1RDD = javaSparkContext.parallelizePairs(words1);
        JavaPairRDD<String, Integer> words2RDD = javaSparkContext.parallelizePairs(words2);

        // 使用cogroup算子关联两个RDD
        // 相当于是,一个key join上的所有value,都给放到一个Iterable里面去了
        // cogroup,不太好讲解,希望通过动手编写我们的案例,仔细体会其中的奥妙
        JavaPairRDD<String, Tuple2<Iterable<Integer>, Iterable<Integer>>> studentScore = words1RDD.cogroup(words2RDD);
        studentScore.foreach(new VoidFunction<Tuple2<String, Tuple2<Iterable<Integer>, Iterable<Integer>>>>() {
            @Override
            public void call(Tuple2<String, Tuple2<Iterable<Integer>, Iterable<Integer>>> t) throws Exception {
                System.out.println(t._1);
                System.out.println(t._2._1);
                System.out.println(t._2._2);
                System.out.println("===============================");
            }
        });

        // 关闭javaSparkContext
        javaSparkContext.close();

    }

看图


cogroup.png

cogroup算子

  1. 基础的算子
  2. 在我们大量的实践中,很少遇到说要用cogroup算子的情况
  3. cogroup算子是其他很多算子的基础,比如join

可以把上面那段代码跑一下,其实就是将两个个rdd的key对应的value值分别封装到一个Iterator中去

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容

  • Spark的算子的分类 从大方向来说,Spark 算子大致可以分为以下两类: 1)Transformation 变...
    姚兴泉阅读 1,397评论 0 6
  • Spark的算子的分类 从大方向来说,Spark 算子大致可以分为以下两类: 1)Transformation 变...
    达微阅读 863评论 0 6
  • 3.2 弹性分布式数据集 本节简单介绍RDD,并介绍RDD与分布式共享内存的异同。 3.2.1 RDD简介 在集群...
    Albert陈凯阅读 1,469评论 0 0
  • Apache Spark 是专为大规模数据处理而设计的快速通用的计算引擎。Spark是UC Berkeley AM...
    大佛爱读书阅读 2,811评论 0 20
  • 前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为《Spark性能优化指南》的...
    Alukar阅读 868评论 0 2