HostSpot虚拟机运行时内存
程序计数器——当前线程执行字节码的行号指示器,如果执行Native方法,则计数器值为空,是唯一一个在Java虚拟机规范没有规定OOM情况的区域。
Java虚拟机栈——Java方法执行的内存模型,每个方法以栈帧为单位,栈帧存储方法的局部变量表、动态链接、方法出口。每个方法调用到执行完毕对应一个栈帧在Java虚拟机栈入栈到出栈。局部变量表除了基本类型外还存有对象引用类型,对象引用类型指向一个代表对象的句柄或与其对象相关的位置。
本地方法栈——在Sun HotSpot中本地方法栈与虚拟机栈合二为一,区别是Java虚拟机栈为执行Java方法提供服务,本地方法栈为执行Native方法提供服务。
Java堆——所有线程共享的一块区域,用于存放对象实例,也是运行时内存中占用空间最大的一块,也是垃圾回收的主要区域。Java堆是垃圾收集器管理的主要区域,因此很多时候也被称做“GC堆”。从内存回收的角度来看,由于现在收集器基本都采用分代收集算法,所以Java堆中还可以细分为:新生代和老年代;再细致一点的有Eden空间、From Survivor空间、To Survivor空间等。
方法区——存储加载的类信息(版本号、字段、方法、接口)、常量池(如运行时常量池)、静态变量、即时编译器编译后的代码。
直接内存——不属于Java虚拟机定义的范畴,Native方法创建的对象储存在此区域,与本机总内存相关。
Java对象的创建
虚拟机遇到一条new指令,首先去方法区检查指令的参数(类的类型)能否在常量池(方法区)定位到类的符号引用,并且检查这个符号引用代表的类是否已被加载、解析和初始化过。如果没有,那必须先执行相应的类加载过程。
在类加载检查通过后,接下来虚拟机将为新生对象分配内存。对象所需内存的大小在类加载完成后便可完全确定,为对象分配空间的任务等同于把一块确定大小的内存从Java堆中划分出来。
内存分配完成后,虚拟机需要将分配到的内存空间都初始化为零值(不包括对象头)。接下来,虚拟机要对对象进行必要的设置,例如这个对象是哪个类的实例、如何才能找到类的元数据信息、对象的哈希码、对象的GC分代年龄等信息。这些信息存放在对象的对象头(Object Header)之中。
Java对象的内存布局
在HotSpot虚拟机中,对象在内存中存储的布局可以分为3块区域:对象头(Header)、实例数据(Instance Data)和对齐填充(Padding)。
HotSpot虚拟机的对象头包括两部分信息,第一部分用于存储对象自身的运行时数据,如哈希码(HashCode)、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等,这部分数据的长度在32位和64位的虚拟机(未开启压缩指针)中分别为32bit和64bit,官方称它为“Mark Word”。
对象头的另外一部分是类型指针,即对象指向它的类元数据的指针,HotSpot虚拟机通过这个指针来确定这个对象是哪个类的实例。并不是所有的虚拟机实现都必须在对象数据上保留类型
指针。如果对象是一个Java数组,那在对象头中还必须有一块用于记录数组长度的数据,因为虚拟机可以通过普通Java对象的元数据信息确定Java对象的大小,但是从数组的元数据中却无法确定数组的大小。
接下来的实例数据部分是对象真正存储的有效信息,也是在程序代码中所定义的各种类型的字段内容。无论是从父类继承下来的,还是在子类中定义的,都需要记录起来。
第三部分对齐填充并不是必然存在的,也没有特别的含义,它仅仅起着占位符的作用。由于HotSpot VM的自动内存管理系统要求对象起始地址必须是8字节的整数倍,换句话说,就是对象的大小必须是8字节的整数倍。而对象头部分正好是8字节的倍数(1倍或者2倍),因此,当对象实例数据部分没有对齐时,就需要通过对齐填充来补全。
Java对象的访问定位
目前主流的访问方式有使用句柄和直接指针两种。
如果使用句柄访问的话,那么Java堆中将会划分出一块内存来作为句柄池,reference中存储的就是对象的句柄地址,而句柄中包含了对象实例数据与类型数据各自的具体地址信息。
如果使用直接指针访问,那么Java堆对象的布局中就必须考虑如何放置访问类型数据的相关信息,而reference中存储的直接就是对象地址。
这两种对象访问方式各有优势,使用句柄来访问的最大好处就是reference中存储的是稳定的句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而reference本身不需要修改。
使用直接指针访问方式的最大好处就是速度更快,它节省了一次指针定位的时间开销,由于对象的访问在Java中非常频繁,因此这类开销积少成多后也是一项非常可观的执行成本。就本书讨论的主要虚拟机Sun HotSpot而言,它是使用第二种方式进行对象访问的,但从整个软件开发的范围来看,各种语言和框架使用句柄来访问的情况也十分常见。
如何判断对象需要回收?
引用计数算法(不使用)
给对象中添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器为0的对象就是不可能再被使用的。
但是,至少主流的Java虚拟机里面没有选用引用计数算法来管理内存,其中最主要的原因是它很难解决对象之间相互循环引用的问题。如果两个对象相互引用,除此之外再无任何引用执行这两个对象将导致无法回收。
可达性分析算法(HotSpot虚拟机使用)
这个算法的基本思路就是通过一系列的称为“GC Roots”的对象作为起始点,从这些节点开始向下搜索,搜索所走过的路径称为引用链(Reference Chain),当一个对象到GC Roots没有任何引用链相连(用图论的话来说,就是从GC Roots到这个对象不可达)时,则证明此对象是不可用的。如图,对象object 5、object 6、object 7虽然互相有关联,但是它们到GC Roots是不可达的,所以它们将会被判定为是可回收的对象。
在Java语言中,可作为GC Roots的对象包括下面几种:
虚拟机栈(栈帧中的本地变量表)中引用的对象。
方法区中类静态属性引用的对象。
方法区中常量引用的对象。
本地方法栈中JNI(即一般说的Native方法)引用的对象。
Java中的引用类型
在JDK 1.2以前,Java中的引用的定义很传统:如果reference类型的数据中存储的数值代表的是另外一块内存的起始地址,就称这块内存代表着一个引用。
在JDK 1.2之后,Java对引用的概念进行了扩充,将引用分为强引用(Strong Reference)、软引用(Soft Reference)、弱引用(Weak Reference)、虚引用(Phantom Reference)4种,这4种引用强度依次逐渐减弱。
强引用——类似“Object obj=new Object()”这类的引用,只要强引用还存在,垃圾收集器永远不会回收掉被引用的对象。
软引用——在系统将要发生内存溢出异常之前,将会把弱引用对象进回收范围之中进行第二次回收。
弱引用——当垃圾收集器工作时,无论当前内存是否足够,都会回收掉只被弱引用关联的对象。因此弱引用无法存活到下次GC之后。
虚引用——一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的就是能在这个对象被收集器回收时收到一个系统通知。
finalize()方法
即使在可达性分析算法中不可达的对象,也并非是“非死不可”的,这时候它们暂时处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行可达性分析后发现没有与GC Roots相连接的引用链,那它将会被第一次标记并且进行一次筛选,筛选的条件是此对象是否有必要执行finalize()方法。当对象没有覆盖finalize()方法,或者finalize()方法已经被虚拟机调用过,虚拟机将这两种情况都视为“没有必要执行”。
任何一个对象的finalize()方法都只会被系统自动调用一次,如果对象面临下一次回收,它的finalize()方法不会被再次执行。
需要特别说明的是,上面关于对象死亡时finalize()方法的描述可能带有悲情的艺术色彩,笔者并不鼓励大家使用这种方法来拯救对象。相反,笔者建议大家尽量避免使用它,因为它不是C/C++中的析构函数,而是Java刚诞生时为了使C/C++程序员更容易接受它所做出的一个妥协。它的运行代价高昂,不确定性大,无法保证各个对象的调用顺序。有些教材中描述它适合做“关闭外部资源”之类的工作,这完全是对这个方法用途的一种自我安慰。
finalize()能做的所有工作,使用try-finally或者其他方式都可以做得更好、更及时,所以笔
者建议大家完全可以忘掉Java语言中有这个方法的存在。
垃圾回收算法
标记-清除算法
如同它的名字一样,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。
它的主要不足有两个:一个是效率问题,标记和清除两个过程的效率都不高;另一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大对象时,无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。
标记—清除算法的执行过程如图所示。
复制算法
它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。这样使得每次都是对整个半区进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为了原来的一半,未免太高了一点。
现在的商业虚拟机都采用这种收集算法来回收新生代,IBM公司的专门研究表明,新生代中的对象98%是“朝生夕死”的,所以并不需要按照1:1的比例来划分内存空间,而是将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中一块Survivor[1]。当回收时,将Eden和Survivor中还存活着的对象一次性地复制到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间。HotSpot虚拟机默认Eden和Survivor的大小比例是8:1,也就是每次新生代中可用内存空间为整个新生代容量的90%(80%+10%),只有10%的内存会被“浪费”。当然,98%的对象可回收只是一般场景下的数据,我们没有办法保证每次回收都只有不多于10%的对象存活,当Survivor空间不够用时,需要依赖其他内存(这里指老年代)进行分配担保(Handle romotion)。
标记-整理算法
标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。
分代收集算法
当前商业虚拟机的垃圾收集都采用“分代收集”(Generational Collection)算法,这种算法并没有什么新的思想,只是根据对象存活周期的不同将内存划分为几块。一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记—清理”或者“标记—整理”算法来进行回收。
HotSpot的算法实现
枚举根节点
在HotSpot的实现中,是使用一组称为OopMap的数据结构来得知哪些地方存放着对象引用,在类加载完成的时候,HotSpot就把对象内什么偏移量上是什么类型的数据计算出来,在JIT编译过程中,也
会在特定的位置记录下栈和寄存器中哪些位置是引用。这样,GC在扫描时就可以直接得知这些信息了。
安全点
实际上,HotSpot也的确没有为每条指令都生成OopMap,前面已经提到,只是在“特定的位置”记录了这些信息,这些位置称为安全点(Safepoint),即程序执行时并非在所有地方都能停顿下来开始GC,只有在到达安全点时才能暂停。Safepoint的选定既不能太少以致于让GC等待时间太长,也不能过于频繁以致于过分增大运行时的负荷。所以,安全点的选定基本上是以程序“是否具有让程序长时间执行的特征”为标准进行选定的——因为每条指令执行的时间都非常短暂,程序不太可能因为指令流长度太长这个原因而过长时间运行,“长时间执行”的最明显特征就是指令序列复用,例如方法调用、循环跳转、异常跳转等,所以具有这些功能的指令才会产生Safepoint。
对于Sefepoint,另一个需要考虑的问题是如何在GC发生时让所有线程(这里不包括执行JNI调用的线程)都“跑”到最近的安全点上再停顿下来。这里有两种方案可供选择:抢先式中断(Preemptive Suspension)和主动式中断(Voluntary Suspension),其中抢先式中断不需要线程的执行代码主动去配合,在GC发生时,首先把所有线程全部中断,如果发现有线程中断的地方不在安全点上,就恢复线程,让它“跑”到安全点上。现在几乎没有虚拟机实现采用抢先式中断来暂停线程从而响应GC事件。
而主动式中断的思想是当GC需要中断线程的时候,不直接对线程操作,仅仅简单地设置一个标志,各个线程执行时主动去轮询这个标志,发现中断标志为真时就自己中断挂起。轮询标志的地方和安全点是重合的,另外再加上创建对象需要分配内存的地方。
安全区域
使用Safepoint似乎已经完美地解决了如何进入GC的问题,但实际情况却并不一定。Safepoint机制保证了程序执行时,在不太长的时间内就会遇到可进入GC的Safepoint。但是,程序“不执行”的时候呢?所谓的程序不执行就是没有分配CPU时间,典型的例子就是线程处于Sleep状态或者Blocked状态,这时候线程无法响应JVM的中断请求,“走”到安全的地方去中断挂起,JVM也显然不太可能等待线程重新被分配CPU时间。对于这种情况,就需要安全区域(Safe Region)来解决。
安全区域是指在一段代码片段之中,引用关系不会发生变化。在这个区域中的任意地方开始GC都是安全的。我们也可以把Safe Region看做是被扩展了的Safepoint。
在线程执行到Safe Region中的代码时,首先标识自己已经进入了Safe Region,那样,当在这段时间里JVM要发起GC时,就不用管标识自己为Safe Region状态的线程了。在线程要离开Safe Region时,它要检查系统是否已经完成了根节点枚举(或者是整个GC过程),如果完成了,那线程就继续执行,否则它就必须等待直到收到可以安全离开Safe Region的信号为止。
垃圾收集器
如果说收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现。Java虚拟机规范中对垃圾收集器应该如何实现并没有任何规定,因此不同的厂商、不同版本的虚拟机所提供的垃圾收集器都可能会有很大差别。
如果两个收集器之间存在连线,就说明它们可以搭配使用。虚拟机所处的区域,则表示它是属于新生代收集器还是老年代收集器。
Serial收集器
Serial收集器是最基本、发展历史最悠久的收集器,曾经(在JDK 1.3.1之前)是虚拟机新生代收集的唯一选择。
这个收集器是一个单线程的收集器,但它的“单线程”的意义并不仅仅说明它只会使用一个CPU或一条收集线程去完成垃圾收集工作,更重要的是在它进行垃圾收集时,必须暂停其他所有的工作线程,直到它收集结束。
实际上到现在为止,它依然是虚拟机运行在Client模式下的默认新生代收集器。它也有着优于其他收集器的地方:简单而高效(与其他收集器的单线程比),对于限定单个CPU的环境来说,Serial收集器由于没有线程交互的开销,专心做垃圾收集自然可以获得最高的单线程收集效率。
ParNew收集器
ParNew收集器其实就是Serial收集器的多线程版本,除了使用多条线程进行垃圾收集之外,其余行为包括Serial收集器可用的所有控制参数、收集算法、Stop The World、对象分配规则、回收策略等都与Serial收集器完全一样,在实现上,这两种收集器也共用了相当多的代码。
ParNew收集器除了多线程收集之外,其他与Serial收集器相比并没有太多创新之处,但它却是许多运行在Server模式下的虚拟机中首选的新生代收集器,其中有一个与性能无关但很重要的原因是,除了Serial收集器外,目前只有它能与CMS收集器配合工作。
ParNew收集器在单CPU的环境中绝对不会有比Serial收集器更好的效果,甚至由于存在线程交互的开销,该收集器在通过超线程技术实现的两个CPU的环境中都不能百分之百地保证可以超越Serial收集器。当然,随着可以使用的CPU的数量的增加,它对于GC时系统资源的有效利用还是很有好处的。它默认开启的收集线程数与CPU的数量相同,
并行(Parallel):指多条垃圾收集线程并行工作,但此时用户线程仍然处于等待状态。
并发(Concurrent):指用户线程与垃圾收集线程同时执行(但不一定是并行的,可能会交替执行),用户程序在继续运行,而垃圾收集程序运行于另一个CPU上。
Parallel Scavenge收集器
Parallel Scavenge收集器的特点是它的关注点与其他收集器不同,CMS等收集器的关注点是尽可能地缩短垃圾收集时用户线程的停顿时间,而Parallel Scavenge收集器的目标则是达到一个可控制的吞吐量(Throughput)。所谓吞吐量就是CPU用于运行用户代码的时间与CPU总消耗时间的比值,即吞吐量=运行用户代码时间/(运行用户代码时间+垃圾收集时间),虚拟机总共运行了100分钟,其中垃圾收集花掉1分钟,那吞吐量就是99%。
停顿时间越短就越适合需要与用户交互的程序,良好的响应速度能提升用户体验,而高吞吐量则可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务。
Serial Old收集器
Serial Old是Serial收集器的老年代版本,它同样是一个单线程收集器,使用“标记-整理”算法。这个收集器的主要意义也是在于给Client模式下的虚拟机使用。如果在Server模式下,那么它主要还有两大用途:一种用途是在JDK 1.5以及之前的版本中与Parallel Scavenge收集器搭配使用[1],另一种用途就是作为CMS收集器的后备预案,在并发收集发生Concurrent Mode Failure时使用。
Parallel Old收集器
Parallel Old是Parallel Scavenge收集器的老年代版本,使用多线程和“标记-整理”算法。这个收集器是在JDK 1.6中才开始提供的,在此之前,新生代的Parallel Scavenge收集器一直处于比较尴尬的状态。原因是,如果新生代选择了Parallel Scavenge收集器,老年代除了Serial Old(PS MarkSweep)收集器外别无选择(还记得上面说过Parallel Scavenge收集器无法与CMS收集器配合工作吗?)。由于老年代Serial Old收集器在服务端应用性能上的“拖累”,使用了Parallel Scavenge收集器也未必能在整体应用上获得吞吐量最大化的效果,由于单线程的老年代收集中无法充分利用服务器多CPU的处理能力,在老年代很大而且硬件比较高级的环境中,这种组合的吞吐量甚至还不一定有ParNew加CMS的组合“给力”。
CMS收集器
CMS(Concurrent Mark Sweep)收集器是一种以获取最短回收停顿时间为目标的收集器。目前很大一部分的Java应用集中在互联网站或者B/S系统的服务端上,这类应用尤其重
视服务的响应速度,希望系统停顿时间最短,以给用户带来较好的体验。CMS收集器就非常符合这类应用的需求。
CMS收集器是基于“标记—清除”算法实现的,它的运作过程相对于前面几种收集器来说更复杂一些,整个过程分为4个步骤,包括:
初始标记(CMS initial mark)
并发标记(CMS concurrent mark)
重新标记(CMS remark)
并发清除(CMS concurrent sweep)
其中,初始标记、重新标记这两个步骤仍然需要“Stop The World”。初始标记仅仅只是标记一下GC Roots能直接关联到的对象,速度很快,并发标记阶段就是进行GC RootsTracing的过程,而重新标记阶段则是为了修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,这个阶段的停顿时间一般会比初始标记阶段稍长一些,但远比并发标记的时间短。
由于整个过程中耗时最长的并发标记和并发清除过程收集器线程都可以与用户线程一起工作,所以,从总体上来说,CMS收集器的内存回收过程是与用户线程一起并发执行的。
CMS是一款优秀的收集器,它的主要优点在名字上已经体现出来了:并发收集、低停顿,Sun公司的一些官方文档中也称之为并发低停顿收集器(Concurrent Low Pause Collector)。但是CMS还远达不到完美的程度,它有以下3个明显的缺点:
CMS收集器对CPU资源非常敏感。其实,面向并发设计的程序都对CPU资源比较敏感。在并发阶段,它虽然不会导致用户线程停顿,但是会因为占用了一部分线程(或者说CPU资源)而导致应用程序变慢,总吞吐量会降低。CMS默认启动的回收线程数是(CPU数量+3)/4,也就是当CPU在4个以上时,并发回收时垃圾收集线程不少于25%的CPU资源,并且随着CPU数量的增加而下降。但是当CPU不足4个(譬如2个)时,CMS对用户程序的影响就可能变得很大,如果本来CPU负载就比较大,还分出一半的运算能力去执行收集器线程,就可能导致用户程序的执行速度忽然降低了50%,其实也让人无法接受。
CMS收集器无法处理浮动垃圾(Floating Garbage),可能出现“Concurrent Mode Failure”失败而导致另一次Full GC的产生。由于CMS并发清理阶段用户线程还在运行着,伴随程序运行自然就还会有新的垃圾不断产生,这一部分垃圾出现在标记过程之后,CMS无法在当次收集中处理掉它们,只好留待下一次GC时再清理掉。这一部分垃圾就称为“浮动垃圾”。也是由于在垃圾收集阶段用户线程还需要运行,那也就还需要预留有足够的内存空间给用户线程使用,因此CMS收集器不能像其他收集器那样等到老年代几乎完全被填满了再进行收集,需要预留一部分空间提供并发收集时的程序运作使用。
CMS是一款基于“标记—清除”算法实现的收集器,这意味着收集结束时会有大量空间碎片产生。空间碎片过多时,将会给大对象分配带来很大麻烦,往往会出现老年代还有很大空间剩余,但是无法找到足够大的连续空间来分配当前对象,不得不提前触发一次FullGC。
G1收集器
G1(Garbage-First)收集器是当今收集器技术发展的最前沿成果之一,早在JDK 1.7刚刚确立项目目标,Sun公司给出的JDK 1.7 RoadMap里面,它就被视为JDK 1.7中HotSpot虚拟机的一个重要进化特征。从JDK 6u14中开始就有Early Access版本的G1收集器供开发人员实验、试用,由此开始G1收集器的“Experimental”状态持续了数年时间,直至JDK 7u4,Sun公司才认为它达到足够成熟的商用程度,移除了“Experimental”的标识。
G1是一款面向服务端应用的垃圾收集器。HotSpot开发团队赋予它的使命是(在比较长期的)未来可以替换掉JDK 1.5中发布的CMS收集器。与其他GC收集器相比,G1具备如下特点:
并行与并发:G1能充分利用多CPU、多核环境下的硬件优势,使用多个CPU(CPU或者CPU核心)来缩短Stop-The-World停顿的时间,部分其他收集器原本需要停顿Java线程执行的GC动作,G1收集器仍然可以通过并发的方式让Java程序继续执行。
分代收集:与其他收集器一样,分代概念在G1中依然得以保留。虽然G1可以不需要其他收集器配合就能独立管理整个GC堆,但它能够采用不同的方式去处理新创建的对象和已经存活了一段时间、熬过多次GC的旧对象以获取更好的收集效果。
空间整合:与CMS的“标记—清理”算法不同,G1从整体来看是基于“标记—整理”算法实现的收集器,从局部(两个Region之间)上来看是基于“复制”算法实现的,但无论如何,这两种算法都意味着G1运作期间不会产生内存空间碎片,收集后能提供规整的可用内存。这种特性有利于程序长时间运行,分配大对象时不会因为无法找到连续内存空间而提前触发下一次GC。
可预测的停顿:这是G1相对于CMS的另一大优势,降低停顿时间是G1和CMS共同的关注点,但G1除了追求低停顿外,还能建立可预测的停顿时间模型,能让使用者明确指定在一个长度为M毫秒的时间片段内,消耗在垃圾收集上的时间不得超过N毫秒,这几乎已经是实时Java(RTSJ)的垃圾收集器的特征了。
内存分配与回收策略
对象优先在Eden分配(新生代)
大多数情况下,对象在新生代Eden区中分配。当Eden区没有足够空间进行分配时,虚拟机将发起一次Minor GC。
新生代GC(Minor GC):指发生在新生代的垃圾收集动作,因为Java对象大多都具备朝生夕灭的特性,所以Minor GC非常频繁,一般回收速度也比较快。
老年代GC(Major GC/Full GC):指发生在老年代的GC,出现了Major GC,经常会伴随至少一次的Minor GC(但非绝对的,在Parallel Scavenge收集器的收集策略里就有直接进行Major GC的策略选择过程)。Major GC的速度一般会比Minor GC慢10倍以上。
大对象直接进入老年代
所谓的大对象是指,需要大量连续内存空间的Java对象,最典型的大对象就是那种很长的字符串以及数组(笔者列出的例子中的byte[]数组就是典型的大对象)。大对象对虚拟机的内存分配来说就是一个坏消息(替Java虚拟机抱怨一句,比遇到一个大对象更加坏的消息就是遇到一群“朝生夕灭”的“短命大对象”,写程序的时候应当避免),经常出现大对象容易导致内存还有不少空间时就提前触发垃圾收集以获取足够的连续空间来“安置”它们(新生代复制算法导致空间整理)。
长期存活的对象将进入老年代
既然虚拟机采用了分代收集的思想来管理内存,那么内存回收时就必须能识别哪些对象应放在新生代,哪些对象应放在老年代中。为了做到这点,虚拟机给每个对象定义了一个对象年龄(Age)计数器。如果对象在Eden出生并经过第一次Minor GC后仍然存活,并且能被Survivor容纳的话,将被移动到Survivor空间中,并且对象年龄设为1。对象在Survivor区中每“熬过”一次Minor GC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15岁),就将会被晋升到老年代中。
动态对象年龄判定
为了能更好地适应不同程序的内存状况,虚拟机并不是永远地要求对象的年龄必须达到了MaxTenuringThreshold才能晋升老年代,如果在Survivor空间中相同年龄所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无须等到MaxTenuringThreshold中要求的年龄。
空间分配担保
在发生Minor GC之前,虚拟机会先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果这个条件成立,那么Minor GC可以确保是安全的。如果不成立,则虚拟机会查看HandlePromotionFailure设置值是否允许担保失败。如果允许,那么会继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大于,将尝试着进行一次Minor GC,尽管这次Minor GC是有风险的;如果小于,或者HandlePromotionFailure设置不允许冒险,那这时也要改为进行一次Full GC。
下面解释一下“冒险”是冒了什么风险,前面提到过,新生代使用复制收集算法,但为了内存利用率,只使用其中一个Survivor空间来作为轮换备份,因此当出现大量对象在Minor GC后仍然存活的情况(最极端的情况就是内存回收后新生代中所有对象都存活),就需要老年代进行分配担保,把Survivor无法容纳的对象直接进入老年代。与生活中的贷款担保类似,老年代要进行这样的担保,前提是老年代本身还有容纳这些对象的剩余空间,一共有多少对象会活下来在实际完成内存回收之前是无法明确知道的,所以只好取之前每一次回收晋升到老年代对象容量的平均大小值作为经验值,与老年代的剩余空间进行比较,决定是否进行Full GC来让老年代腾出更多空间。