功--by-费世煌

可能用到的符号

30^{\circ}, \int_{0}^{10}(4+2x)dx

$30^{\circ}$, $\int_{0}^{10} (4+2x) dx$

知识点


  • 功的定义与作用
    • W=\int^B_A \vec{F}\cdot d\vec{r}=\int^B_A F\cdot \cos \theta (s) \cdot ds
  • 恒力的功
  • 变力的功
    • 直接积分法
    • 动能定理法
    • 建模积分法
        1. 指明一个元过程
        2. 写出元功表达式,其中力F和角度\theta可能都是位置的函数
        3. 对元功进行积分

例题


  • 例1. 恒力与位移同向
    某物体,收到沿着x轴的恒力F=10作用,并沿着x轴正向移动了\Delta x=5的位移,则该力做功为( )

解答:w=F\cdot\Delta x=10\times 5=50J

​ 则该力做的功为50J


  • 例2. 恒力与位移同向有固定夹角
    某物体,收到沿着x轴向上30^{\circ}的恒力F=10作用,并沿着x轴正向移动了\Delta x=5的位移,则该力做功为( )

解答:w=F\cos \theta \cdot\Delta x=10 \times 5\times \frac{\sqrt{3}}{2}=25\sqrt{3}

​ 则该力做的功为25\sqrt{3}\;J


  • 例3. 变力:大小不变,夹角\theta随位移变化
    某物体,收到大小恒定的力F=10作用,且它与x轴的夹角\theta(x)=x。在该力作用下,物体从坐标原点沿着x轴正向移动到x=1,则该力做功为( )

解答:W=\int^1_0 10\cdot\cos \theta_{x} dx=10\cdot \sin\theta\mid^1_0=10\sin 1

​ 在微小的过程中\theta可以被视作不变,从x运动到dx的过程


  • 例4. 变力:方向不变,大小F随位移变化
    某质点在力 \vec{F}=(4+2x)\ \vec{i} 的作用下沿x 轴作直线运动,在从x=0 移动到x=10 的过程中,力所做的功为( )

解答:dW=\int^{10}_0 Fdx=\int^{10}_0(4+2x)dx=(4x+2x^2)|^{10}_0=240J

  • 例5. 变力:初末状态知道,用动能定理
    质量为m的质点在合外力 \vec{F}=(4+2v)\ \vec{i} 的作用下沿x 轴作直线运动,在从v=0 移动到v=10 的过程中,合外力所做的功为( ).

解答:

W=\frac{1}{2}mv_{末态}^2-\frac{1}{2}mv_{初态}^2=\frac{1}{2}\times m\times 100-0=50m

  • 作业
    变力做功的常用方法:动能定理。质量为m=2的质点,在Oxy坐标平面内运动,其运动方程为x=5ty=t^{2},从t=2t=4 这段时间内,外力对质点作的功为().

解答:

​ 从x轴上看:v_{x}=x^\prime=5

​ 从y轴上看:v_{y}=y^\prime=2t

​ 从x角度分析,则质点在x方向上做匀速直线运动。

​ 从y角度分析,则质点在y方向上做匀加速直线运动。

v_{y(末)}=2t=8\;m/s,v_{y(初)}=2t=4\;m/s

W=\frac{1}{2}mv_{y(末)}^2-\frac{1}{2}mv_{y(初)}^2=8^2-4^2=64-16=48J

  • 作业
    变力做功的常用方法:动能定理。质量m=1 的质点在力F=2t\ \vec{i} 的作用下,从静止出发沿x 轴正向作直线运动,则前3秒内该力所作的功为()。

解答:

​ 根据动量定理、以及冲量定理:I=F\cdot t,P=m\cdot v,且I=P

I=\int^3_0 F\;dt=\int^3_0 2t\;dt=t^2|^3_0=9\;N/s

v=\frac{F\cdot t}{m}=9\;m/s

W=\frac{1}{2}mv^2=\frac{81}{2}J

  • 作业
    质量m=2 的物体沿x轴作直线运动,所受合外力F=1+2x 。如果在x=0处时速度v_{0}=\sqrt{5};求该物体运动到x=4处时速度的大小( )。

解答:

\Delta W=F\cdot x=\int^4_0 F dx=\int^4_0 (1+2x) dx=(x+x^2)|^4_0=20\;J

W_{末}=W_{初}+\Delta W=\frac{1}{2}mv_0^2+F\cdot x=5+20=25\;J

W_末=\frac{1}{2}mv_末^2 \Longleftrightarrow v_末=\sqrt{\frac{2W_末}{m}}=5\;m/s

例6. 建模积分法
一人从深度为H的井中提水,起始时桶中装有质量为M的水,桶的质量为M_{0} kg,由于水桶漏水,每升高1米要漏去质量为a的水。求水桶匀速缓慢地从井中提到井口人所作的功。
以井底为原点,向上为正方向建立x 轴。
第一步,关于积分微小过程的描述有
(1) 当水桶位于x位置时
(2) 当水桶从x位置上升到x+dx的过程中。
第二步,元功F(x)dx应表达为
(3) (M_{0}+M-xa)gdx
(4) (M_{0}+M+xa)dx
第三步,定积分的写法为
(5) \intop_{0}^{H}F(x)dx
(6) \intop_{M}^{0}F(x)dx
以上正确的是( )

解答:(2)(3)(5)

  • 作业
    一链条总长为l,质量为m,放在桌面上,并使其部分下垂,下垂一段的长度为a.设链条与桌面之间的滑动摩擦系数为\mu。令链条由静止开始运动,则到链条刚离开桌面的过程中,摩擦力对链条作了多少功?

以桌面边缘为原点,以向下为正方向建立x 轴。
第一步,关于积分微小过程的描述有

​ ...下垂了\Delta a,则上方质量变化了\frac{l-a}{l}\cdot m

第二步,摩擦力的元功f(x)dx应表达为

​ ...则摩擦力为dw=f\cdot dy

第三步,定积分的写法为

W=\int^l_a u\frac{l-y}{l}\cdot mg\;dy

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,905评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,140评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,791评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,483评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,476评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,516评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,905评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,560评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,778评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,557评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,635评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,338评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,925评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,898评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,142评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,818评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,347评论 2 342

推荐阅读更多精彩内容

  • 功 可能用到的符号 , $30^{\circ}$, $\int_{0}^{10} (4+2x) dx$ 知识点 功...
    一个张不凡阅读 573评论 1 1
  • 可能用到的符号 , $30^{\circ}$, $\int_{0}^{10} (4+2x) dx$ 知识点 功的定...
    我爱wuli阅读 563评论 2 0
  • 功 可能用到的符号 , $30^{\circ}$, $\int_{0}^{10} (4+2x) dx$ 知识点 功...
    橘子汽水_900阅读 598评论 1 0
  • 中华道家修炼筑基法,先从静功开始。其实修炼过程的每一步功夫,都离不开静功的作用。无论是起初入手、最末了手,还是中间...
    boks阅读 15,912评论 2 18
  • 我不是淘气宝宝! 我不是淘气宝宝! 我不是淘气宝宝! 我不是淘气宝宝!!!(重要的事情说三遍以上)...
    叫什么名字好听v阅读 191评论 0 0