Kafka之ISR机制的理解

Kafka对于producer发来的消息怎么保证可靠性?
每个partition都给配上副本,做数据同步,保证数据不丢失。

副本数据同步策略
和zookeeper不同的是,Kafka选择的是全部完成同步,才发送ack。但是又有所区别。

所以,你们才会在各种博客看到这句话【kafka不是完全同步,也不是完全异步,是一种ISR机制】

这句话对也不对,不对也对(谜语人......)

首先笔者认为:Kafka使用的就是完全同步方案。

完全同步的优点
同样为了容忍 n 台节点的故障,过半机制需要 2n+1 个副本,而全部同步方案只需要 n+1 个副本,

而 Kafka 的每个分区都有大量的数据,过半机制方案会造成大量数据的冗余。(这就是和zookeeper的不同)

完全同步会有什么问题?
假设就有这么一个follower延迟太高或者某种故障的情况出现,导致迟迟不能与leader进行同步。

怎么办?leader等还是不等?

等吧:producer有话要说:“Kafka也不行啊,处理个消息这么费劲,垃圾,你等NM呢等”

不等:那你Kafka对外说完全同步个鸡儿,你这是完全同步么?

基于此,Kafka的设计者和开发者想出了一个非常鸡贼的点子:ISR

什么是ISR?
先来看几个概念

1、AR(Assigned Repllicas)一个partition的所有副本(就是replica,不区分leader或follower)

2、ISR(In-Sync Replicas)能够和 leader 保持同步的 follower + leader本身 组成的集合。

3、OSR(Out-Sync Relipcas)不能和 leader 保持同步的 follower 集合

4、公式:AR = ISR + OSR

所以,看明白了吗?

Kafka对外依然可以声称是完全同步,但是承诺是对AR中的所有replica完全同步了吗?

并没有。Kafka只保证对ISR集合中的所有副本保证完全同步。

至于,ISR到底有多少个follower,那不知道,别问,问就是完全同步,你再问就多了。

这就好比网购买一送一,结果邮来了一大一小两个产品。

你可能觉得有问题,其实是没问题的,商家说送的那个是一模一样的了吗?并没有。

ISR就是这个道理,Kafka是一定会保证leader接收到的消息完全同步给ISR中的所有副本。

而最坏的情况下,ISR中只剩leader自己。

基于此,上述完全同步会出现的问题就不是问题了。

因为ISR的机制就保证了,处于ISR内部的follower都是可以和leader进行同步的,一旦出现故障或延迟,就会被踢出ISR。

ISR 的核心就是:动态调整

总结:Kafka采用的就是一种完全同步的方案,而ISR是基于完全同步的一种优化机制。

follower的作用
读写都是由leader处理,follower只是作备份功能,不对外提供服务。

什么情况ISR中的replica会被踢出ISR?
以前有2个配置

默认10000 即 10秒

replica.lag.time.max.ms

允许 follower 副本落后 leader 副本的消息数量,超过这个数量后,follower 会被踢出 ISR

replica.lag.max.messages
说白了就是一个衡量leader和follower之间差距的标准。

一个是基于时间间隔,一个是基于消息条数。

0.9.0.0版本之后,移除了replica.lag.max.messages 配置。

为什么?

因为producer是可以批量发送消息的,很容易超过replica.lag.max.messages,那么被踢出ISR的follower就是受了无妄之灾。

他们都是没问题的,既没有出故障也没高延迟,凭什么被踢?

replica.lag.max.messages调大呢?调多大?太大了是否会有漏网之鱼,造成数据丢失风险?

这就是replica.lag.max.messages的设计缺陷。

replica.lag.time.max.ms的误区
【只要在 replica.lag.time.max.ms 时间内 follower 有同步消息,即认为该 follower 处于 ISR 中】

你去网上看博客,很多博客表达的就是这个意思,不过笔者认为这么描述很容易误导初学者。

那我是不是可以理解为,follower有个定时任务,只要在replica.lag.time.max.ms时间内去leader那pull数据就行了。

其实不是的。千万不要这么认为,因为这里还涉及一个速率问题(你理解为蓄水池一个放水一个注水的问题)。

如果leader副本的消息流入速度大于follower副本的拉取速度时,你follower就是实时同步有什么用?

典型的出工不出力,消息只会越差越多,这种follower肯定是要被踢出ISR的。

当follower副本将leader副本的LEO之前的日志全部同步时,则认为该follower副本已经追赶上leader副本。

此时更新该副本的lastCaughtUpTimeMs标识。

Kafka的副本管理器(ReplicaManager)启动时会启动一个副本过期检测的定时任务,

会定时检查当前时间与副本的lastCaughtUpTimeMs差值是否大于参数replica.lag.time.max.ms指定的值。

所以replica.lag.time.max.ms的正确理解是:

follower在过去的replica.lag.time.max.ms时间内,已经追赶上leader一次了。

follower到底出了什么问题?
两个方面,一个是Kafka自身的问题,另一个是外部原因

Kafka源码注释中说明了一般有两种情况会导致副本失效:

1、follower副本进程卡住,在一段时间内根本没有想leader副本发起同步请求,比如频繁的Full GC。

2、follower副本进程同步过慢,在一段时间内都无法追赶上leader副本,比如IO开销过大。

1、通过工具增加了副本因子,那么新增加的副本在赶上leader副本之前也都是处于失效状态的。

2、如果一个follower副本由于某些原因(比如宕机)而下线,之后又上线,在追赶上leader副本之前也是出于失效状态。

什么情况OSR中的replica会重新加入ISR?
基于上述,replica重新追上了leader,就会回到ISR中。

相关的重要概念
需要先明确几个概念:

1、LEO(last end offset):

当前replica存的最大的offset的下一个值

2、HW(high watermark):

小于 HW 值的offset所对应的消息被认为是“已提交”或“已备份”的消息,才对消费者可见。

假设ISR中目前有1个leader,3个follower。

1、leader接收一个消息,自己保存后,马上发送3个请求通知3个follower赶紧保存

2、等待3个follower响应保存成功

3、响应producer,消息提交成功

你是这么想的么?反正当时我是这么想的。

实际上不是的,这个同步是follower主动去请求leader进行同步的。

因为是每个follower情况不一样,所以才会出现LEO和HW的概念。

简言之,木桶原理

replica里存了多少数据和consumer能消费多少数据,不是一回事。

所谓木桶原理,就是把每个replica当作一个木桶的板子,桶能装多少水只取决于最短的那块板子。

这就是也有些人把HW叫成 高水位 的原因。

而 HW 的概念,也契合前文提到的【完全同步】,HW之前的所有消息,在ISR中是完全同步的。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容