本章将介绍Okio下的各种装饰流:
1.Forwarding流
public abstract class ForwardingSink implements Sink {
private final Sink delegate;
public ForwardingSink(Sink delegate) {
if (delegate == null) throw new IllegalArgumentException("delegate == null");
this.delegate = delegate;
}
/** {@link Sink} to which this instance is delegating. */
public final Sink delegate() {
return delegate;
}
@Override public void write(Buffer source, long byteCount) throws IOException {
delegate.write(source, byteCount);
}
@Override public void flush() throws IOException {
delegate.flush();
}
@Override public Timeout timeout() {
return delegate.timeout();
}
@Override public void close() throws IOException {
delegate.close();
}
@Override public String toString() {
return getClass().getSimpleName() + "(" + delegate.toString() + ")";
}
}
Forwarding流乍看之下似乎没有什么实际用处,但是在实际作用中,常常用来作为匿名的代理对象,由于传入的sink本身我们无法继承和复写,这样我们可以直接采用装饰Forwarding流的方式来监控和拦截一些操作。
2.DeflaterSink和InflaterSource流
这对流主要对应于zip压缩流,类似ZipInputStream和ZipOutputStream,而实际上再ZipInputStream中实际上也用到了相同的API.
//code ZipInputStream.java
public class ZipInputStream {
public void read(...) {
try {
read = inf.inflate(buffer, byteOffset, byteCount);//引用了一个protected Inflater inf;对象
} catch (DataFormatException e) {
throw new ZipException(e.getMessage());
}
}
}
我们看到在ZipInputStream的流读取处理的时候,用到了一个Inflater类型的对象,这个对象是专门用来处理Zip格式编码的工具类。而在InflaterSource这个源去读取数据的时候,也一样用到了这个类:
//
while (true) {
boolean sourceExhausted = refill();
// Decompress the inflater's compressed data into the sink.
try {
Segment tail = sink.writableSegment(1);
int bytesInflated = inflater.inflate(tail.data, tail.limit, Segment.SIZE - tail.limit);
if (bytesInflated > 0) {
tail.limit += bytesInflated;
sink.size += bytesInflated;
return bytesInflated;
}
if (inflater.finished() || inflater.needsDictionary()) {
releaseInflatedBytes();
if (tail.pos == tail.limit) {
// We allocated a tail segment, but didn't end up needing it. Recycle!
sink.head = tail.pop();
SegmentPool.recycle(tail);
}
return -1;
}
if (sourceExhausted) throw new EOFException("source exhausted prematurely");
} catch (DataFormatException e) {
throw new IOException(e);
}
}
3.GzipSource和GzipSink流
Gzip和zip的主要区别在于平台通用性和压缩率,一般情况下,Gzip的压缩率更高点,Gzip是基于zip算法上的再改造。因此,在Gzip流中必须包装原始流为一个InflaterSource流:
public GzipSink(Sink sink) {
if (sink == null) throw new IllegalArgumentException("sink == null");
this.deflater = new Deflater(DEFAULT_COMPRESSION, true /* No wrap */);
this.sink = Okio.buffer(sink);
this.deflaterSink = new DeflaterSink(this.sink, deflater);
writeHeader();
}
4.Pipe流
Okio中的pipe流类似生产者消费者的模式,例如在管道流PipeSource读取的时候,发现buffer.size,也就是缓冲池数据长度为0的时候,管道PipeSource流陷入等待。一直等到PipeSink流往Buffer中再输出的时候,阻塞消失。并且,管道的流一定是成对出现的。
final class PipeSource implements Source {
final Timeout timeout = new Timeout();
@Override public long read(Buffer sink, long byteCount) throws IOException {
synchronized (buffer) {
if (sourceClosed) throw new IllegalStateException("closed");
while (buffer.size() == 0) {// buffer为空
if (sinkClosed) return -1L;
timeout.waitUntilNotified(buffer); // Wait until the sink fills the buffer.//陷入等待
}
long result = buffer.read(sink, byteCount);
buffer.notifyAll(); // Notify the sink that it can resume writing.
return result;
}
}
@Override public void close() throws IOException {
synchronized (buffer) {
sourceClosed = true;
buffer.notifyAll(); // Notify the sink that no more bytes are desired.
}
}
@Override public Timeout timeout() {
return timeout;
}
}