Python进阶 —— 面向对象编程 —— 钻石继承

作者是一名沉迷于Python无法自拔的蛇友,为提高水平,把Python的重点和有趣的实例发在简书上。

面向对象编程

面向对象编程(Object Oriented Programming,OOP,面向对象程序设计)是一种计算机编程架构。OOP 的一条基本原则是计算机程序是由单个能够起到子程序作用的单元或对象组合而成。OOP 达到了软件工程的三个主要目标:重用性、灵活性和扩展性。为了实现整体运算,每个对象都能够接收信息、处理数据和向其它对象发送信息。一项由 Deborah J. Armstrong 进行的长达40年之久的计算机著作调查显示出了一系列面向对象程序设计的基本理论。
(来源于不说人话的百度百科)

个人理解:在Python中,面向对象编程使用class关键字,就好似构建一个整体的框架,使一切都变得更方便。

多继承

注意:下面的图片只适用于Python2,Python3已全部是新式类!!!

image.png

钻石继承(继承于多继承)

为什么叫做钻石继承,说白了就是给一个见鬼的缺陷起一个好听的名字(大部分主流语言都禁止多继承)
还有,看看图片就明白了。


钻石继承

请看一下示例:

class A():
    def __init__(self):
        print("进入A…")
        print("离开A…")

class B(A):
    def __init__(self):
        print("进入B…")
        A.__init__(self)
        print("离开B…")
        
class C(A):
    def __init__(self):
        print("进入C…")
        A.__init__(self)
        print("离开C…")

class D(B, C):
    def __init__(self):
        print("进入D…")
        B.__init__(self)
        C.__init__(self)
        print("离开D…")

>>> d = D()
进入D…
进入B…
进入A…
离开A…
离开B…
进入C…
进入A…
离开A…
离开C…
离开D…

钻石继承(菱形继承)会带来什么问题?

多重继承容易导致钻石继承(菱形继承)问题,上边代码实例化 D 类后我们发现 A 被前后进入了两次

有童鞋说两次就两次憋,我女朋友还不止呢......

这有什么危害?

我举个例子,假设 A 的初始化方法里有一个计数器,那这样 D 一实例化,A的初始化方法里有一个计数器,那这样 D 一实例化,A 的计数器就跑两次(如果遭遇多个钻石结构重叠还要更多),很明显是不符合程序设计的初衷的(程序应该可控,而不能受到继承关系影响)。

如何避免钻石继承(菱形继承)问题?

为解决这个问题,Python 使用了一个叫“方法解析顺序(Method Resolution Order,MRO)”的东西,还用了一个叫 C3 的算法。

该算法相对来说比较复杂(有兴趣深入算法的朋友可以阅读:https://www.python.org/download/releases/2.3/mro

当然我这里愿意跟你解释下 MRO 的顺序基本就是:在避免同一类被调用多次的前提下,使用广度优先和从左到右的原则去寻找需要的属性和方法。

在继承体系中,C3 算法确保同一个类只会被搜寻一次。例子中,如果一个属性或方法在 D 类中没有被找到,Python 就会搜寻 B 类,然后搜索 C类,如果都没有找到,会继续搜索 B 的基类 A,如果还是没有找到,则抛出“AttributeError”异常。

你可以使用 类名.mro 获得 MRO 的顺序(注:object 是所有类的基类,金字塔的顶端):

 >>> D.__mro__
(<class '__main__.D'>, <class '__main__.B'>, <class '__main__.C'>, <class '__main__.A'>, <class 'object'>)

然而,Python解决了这个问题,super()让你不再苦恼。

class A():
    def __init__(self):
        print("进入A…")
        print("离开A…")

class B(A):
    def __init__(self):
        print("进入B…")
        super().__init__()
        print("离开B…")
        
class C(A):
    def __init__(self):
        print("进入C…")
        super().__init__()
        print("离开C…")

class D(B, C):
    def __init__(self):
        print("进入D…")
        super().__init__()
        print("离开D…")

>>> d = D()
进入D…
进入B…
进入C…
进入A…
离开A…
离开C…
离开B…
离开D…

这样就没问题了。

总结

虽然Python解决了这个问题,但是笔者建议大家尽可能避免多继承问题,它会使你的程序出现一些始料不及的情况。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 199,064评论 5 466
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 83,606评论 2 376
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 146,011评论 0 328
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 53,550评论 1 269
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 62,465评论 5 359
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 47,919评论 1 275
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,428评论 3 390
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,075评论 0 254
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,208评论 1 294
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,185评论 2 317
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,191评论 1 328
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,914评论 3 316
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,482评论 3 302
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,585评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,825评论 1 255
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,194评论 2 344
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 41,703评论 2 339

推荐阅读更多精彩内容