以太坊的代码中,名为miner的包负责挖矿的流程。其UML关系图如下图所示:
整体来说,就是一个矿工miner,拥有一个工人worker,工人拥有N个代理agent。
miner
在miner里,有New()函数,在这里初始化成员变量的属性,比如worker,agent。在初始化完成时,就在其它协程里执行update()方法。
而在update()方法里,它是一个死循环在监听着一个通道,这个通道是来自downloader的一些事件:开始,完成,失败。当下载开始的时候,停止挖矿行为,当下载完成或者失败的时候,执行Start()方法,在Start()方法里,主要调用了worker的start()、commitNewWork()方法。
func (self *Miner) update() {
events := self.mux.Subscribe(downloader.StartEvent{}, downloader.DoneEvent{}, downloader.FailedEvent{})
out:
for ev := range events.Chan() {
switch ev.Data.(type) {
case downloader.StartEvent:
atomic.StoreInt32(&self.canStart, 0)
if self.Mining() {
self.Stop()
atomic.StoreInt32(&self.shouldStart, 1)
log.Info("Mining aborted due to sync")
}
case downloader.DoneEvent, downloader.FailedEvent:
shouldStart := atomic.LoadInt32(&self.shouldStart) == 1
atomic.StoreInt32(&self.canStart, 1)
atomic.StoreInt32(&self.shouldStart, 0)
if shouldStart {
self.Start(self.coinbase)
}
// unsubscribe. we're only interested in this event once
events.Unsubscribe()
// stop immediately and ignore all further pending events
break out
}
}
}
func (self *Miner) Start(coinbase common.Address) {
atomic.StoreInt32(&self.shouldStart, 1)
self.SetEtherbase(coinbase)
if atomic.LoadInt32(&self.canStart) == 0 {
log.Info("Network syncing, will start miner afterwards")
return
}
atomic.StoreInt32(&self.mining, 1)
log.Info("Starting mining operation")
self.worker.start()
self.worker.commitNewWork()
}
worker
在worker.go文件里,在初始化worker结构体的时候,分别开了一个协程去执行update(), wait()两个方法。
func newWorker(config *params.ChainConfig, engine consensus.Engine, coinbase common.Address, eth Backend, mux *event.TypeMux) *worker {
worker := &worker{
config: config,
engine: engine,
eth: eth,
mux: mux,
txCh: make(chan core.TxPreEvent, txChanSize),
chainHeadCh: make(chan core.ChainHeadEvent, chainHeadChanSize),
chainSideCh: make(chan core.ChainSideEvent, chainSideChanSize),
chainDb: eth.ChainDb(),
recv: make(chan *Result, resultQueueSize),
chain: eth.BlockChain(),
proc: eth.BlockChain().Validator(),
possibleUncles: make(map[common.Hash]*types.Block),
coinbase: coinbase,
agents: make(map[Agent]struct{}),
unconfirmed: newUnconfirmedBlocks(eth.BlockChain(), miningLogAtDepth),
}
// Subscribe TxPreEvent for tx pool
worker.txSub = eth.TxPool().SubscribeTxPreEvent(worker.txCh)
// Subscribe events for blockchain
worker.chainHeadSub = eth.BlockChain().SubscribeChainHeadEvent(worker.chainHeadCh)
worker.chainSideSub = eth.BlockChain().SubscribeChainSideEvent(worker.chainSideCh)
go worker.update()
go worker.wait()
worker.commitNewWork()
return worker
}
这里我们就来主要看下update(), wait()两个方法。
update()
func (self *worker) update() {
defer self.txSub.Unsubscribe()
defer self.chainHeadSub.Unsubscribe()
defer self.chainSideSub.Unsubscribe()
for {
// A real event arrived, process interesting content
select {
// Handle ChainHeadEvent
case <-self.chainHeadCh:
self.commitNewWork()
// Handle ChainSideEvent
case ev := <-self.chainSideCh:
self.uncleMu.Lock()
self.possibleUncles[ev.Block.Hash()] = ev.Block
self.uncleMu.Unlock()
// Handle TxPreEvent
case ev := <-self.txCh:
// Apply transaction to the pending state if we're not mining
if atomic.LoadInt32(&self.mining) == 0 {
self.currentMu.Lock()
acc, _ := types.Sender(self.current.signer, ev.Tx)
txs := map[common.Address]types.Transactions{acc: {ev.Tx}}
txset := types.NewTransactionsByPriceAndNonce(self.current.signer, txs)
self.current.commitTransactions(self.mux, txset, self.chain, self.coinbase)
self.currentMu.Unlock()
} else {
// If we're mining, but nothing is being processed, wake on new transactions
if self.config.Clique != nil && self.config.Clique.Period == 0 {
self.commitNewWork()
}
}
// System stopped
case <-self.txSub.Err():
return
case <-self.chainHeadSub.Err():
return
case <-self.chainSideSub.Err():
return
}
}
}
从update()方法中可以看出,它一直在监听几个通道:ChainHeadEvent,ChainSideEvent,TxPreEvent。当接收到了新区块后,立即开始下一块的挖掘。ChainSideEvent指区块链中加入了一个新区块作为当前链的旁支,worker会把这个块放入possibleUncles[]数组里。TxPreEvent是新交易的到来,如果worker当时在挖矿状态中,那就不问这个交易,如果不在挖矿状态中,就把交易加入work.txs数组里面。
wait()
func (self *worker) wait() {
for {
mustCommitNewWork := true
// 死循环在读取结果
for result := range self.recv {
atomic.AddInt32(&self.atWork, -1)
if result == nil {
continue
}
block := result.Block
work := result.Work
// Update the block hash in all logs since it is now available and not when the
// receipt/log of individual transactions were created.
for _, r := range work.receipts {
for _, l := range r.Logs {
l.BlockHash = block.Hash()
}
}
for _, log := range work.state.Logs() {
log.BlockHash = block.Hash()
}
// 链 写块
stat, err := self.chain.WriteBlockWithState(block, work.receipts, work.state)
if err != nil {
log.Error("Failed writing block to chain", "err", err)
continue
}
// check if canon block and write transactions
if stat == core.CanonStatTy {
// implicit by posting ChainHeadEvent
mustCommitNewWork = false
}
// Broadcast the block and announce chain insertion event
// 广播块
self.mux.Post(core.NewMinedBlockEvent{Block: block})
var (
events []interface{}
logs = work.state.Logs()
)
events = append(events, core.ChainEvent{Block: block, Hash: block.Hash(), Logs: logs})
if stat == core.CanonStatTy {
events = append(events, core.ChainHeadEvent{Block: block})
}
self.chain.PostChainEvents(events, logs)
// Insert the block into the set of pending ones to wait for confirmations
self.unconfirmed.Insert(block.NumberU64(), block.Hash())
if mustCommitNewWork {
self.commitNewWork()
}
}
}
}
从方法中可以看到,这里依然在不停的从通道 recv 中读取结果。一旦发现一个新块,就把块加入本地的区块链试图成为最新的区块,然后worker会发送一条事件NewMinedBlockEvent{},告诉其他节点我挖到块了。然后就是开始提交新的工作commitNewWork()。
commitNewWork()
// 提交新工作
func (self *worker) commitNewWork() {
self.mu.Lock()
defer self.mu.Unlock()
self.uncleMu.Lock()
defer self.uncleMu.Unlock()
self.currentMu.Lock()
defer self.currentMu.Unlock()
// 当前时间
tstart := time.Now()
parent := self.chain.CurrentBlock()
tstamp := tstart.Unix()
if parent.Time().Cmp(new(big.Int).SetInt64(tstamp)) >= 0 {
tstamp = parent.Time().Int64() + 1
}
// this will ensure we're not going off too far in the future
// 检查上一块的时间是否大于本地时间。
if now := time.Now().Unix(); tstamp > now+1 {
wait := time.Duration(tstamp-now) * time.Second
log.Info("Mining too far in the future", "wait", common.PrettyDuration(wait))
time.Sleep(wait)
}
// 创建header结构体,包含了部分属性
num := parent.Number()
header := &types.Header{
ParentHash: parent.Hash(),
Number: num.Add(num, common.Big1),
GasLimit: core.CalcGasLimit(parent),
Extra: self.extra,
Time: big.NewInt(tstamp),
}
// Only set the coinbase if we are mining (avoid spurious block rewards)
// 设置Coinbase
if atomic.LoadInt32(&self.mining) == 1 {
header.Coinbase = self.coinbase
}
// 设置难度
if err := self.engine.Prepare(self.chain, header); err != nil {
log.Error("Failed to prepare header for mining", "err", err)
return
}
// If we are care about TheDAO hard-fork check whether to override the extra-data or not
if daoBlock := self.config.DAOForkBlock; daoBlock != nil {
// Check whether the block is among the fork extra-override range
limit := new(big.Int).Add(daoBlock, params.DAOForkExtraRange)
if header.Number.Cmp(daoBlock) >= 0 && header.Number.Cmp(limit) < 0 {
// Depending whether we support or oppose the fork, override differently
if self.config.DAOForkSupport {
header.Extra = common.CopyBytes(params.DAOForkBlockExtra)
} else if bytes.Equal(header.Extra, params.DAOForkBlockExtra) {
header.Extra = []byte{} // If miner opposes, don't let it use the reserved extra-data
}
}
}
// Could potentially happen if starting to mine in an odd state.
// 创建当前工作结构体
err := self.makeCurrent(parent, header)
if err != nil {
log.Error("Failed to create mining context", "err", err)
return
}
// Create the current work task and check any fork transitions needed
work := self.current
if self.config.DAOForkSupport && self.config.DAOForkBlock != nil && self.config.DAOForkBlock.Cmp(header.Number) == 0 {
misc.ApplyDAOHardFork(work.state)
}
// 从交易池中取出交易
pending, err := self.eth.TxPool().Pending()
if err != nil {
log.Error("Failed to fetch pending transactions", "err", err)
return
}
txs := types.NewTransactionsByPriceAndNonce(self.current.signer, pending)
work.commitTransactions(self.mux, txs, self.chain, self.coinbase)
// compute uncles for the new block.
// 计算叔块
var (
uncles []*types.Header
badUncles []common.Hash
)
for hash, uncle := range self.possibleUncles {
if len(uncles) == 2 {
break
}
if err := self.commitUncle(work, uncle.Header()); err != nil {
log.Trace("Bad uncle found and will be removed", "hash", hash)
log.Trace(fmt.Sprint(uncle))
badUncles = append(badUncles, hash)
} else {
log.Debug("Committing new uncle to block", "hash", hash)
uncles = append(uncles, uncle.Header())
}
}
for _, hash := range badUncles {
delete(self.possibleUncles, hash)
}
// Create the new block to seal with the consensus engine
// 补充header的Root,TxHash,ReceiptHash,UncleHash等值
if work.Block, err = self.engine.Finalize(self.chain, header, work.state, work.txs, uncles, work.receipts); err != nil {
log.Error("Failed to finalize block for sealing", "err", err)
return
}
// We only care about logging if we're actually mining.
if atomic.LoadInt32(&self.mining) == 1 {
log.Info("Commit new mining work", "number", work.Block.Number(), "txs", work.tcount, "uncles", len(uncles), "elapsed", common.PrettyDuration(time.Since(tstart)))
self.unconfirmed.Shift(work.Block.NumberU64() - 1)
}
self.push(work) // 推给每个agent继续进行挖掘。
}
从方法中,这里构造了新区块头的各种属性,然后推给所有的代理agent。
CpuAgent
cpu代理是真正的挖矿执行者,而它挖矿的方法 mine()调用的却是共识引擎里面的Seal()方法。
func (self *CpuAgent) mine(work *Work, stop <-chan struct{}) {
if result, err := self.engine.Seal(self.chain, work.Block, stop); result != nil {
log.Info("Successfully sealed new block", "number", result.Number(), "hash", result.Hash())
self.returnCh <- &Result{work, result}
} else {
if err != nil {
log.Warn("Block sealing failed", "err", err)
}
self.returnCh <- nil
}
}
ethash/sealer.go
// Seal implements consensus.Engine, attempting to find a nonce that satisfies
// the block's difficulty requirements.
func (ethash *Ethash) Seal(chain consensus.ChainReader, block *types.Block, stop <-chan struct{}) (*types.Block, error) {
// If we're running a fake PoW, simply return a 0 nonce immediately
if ethash.config.PowMode == ModeFake || ethash.config.PowMode == ModeFullFake {
header := block.Header()
header.Nonce, header.MixDigest = types.BlockNonce{}, common.Hash{}
return block.WithSeal(header), nil
}
// If we're running a shared PoW, delegate sealing to it
if ethash.shared != nil {
return ethash.shared.Seal(chain, block, stop)
}
// Create a runner and the multiple search threads it directs
abort := make(chan struct{})
found := make(chan *types.Block)
ethash.lock.Lock()
threads := ethash.threads
if ethash.rand == nil {
seed, err := crand.Int(crand.Reader, big.NewInt(math.MaxInt64))
if err != nil {
ethash.lock.Unlock()
return nil, err
}
ethash.rand = rand.New(rand.NewSource(seed.Int64()))
}
ethash.lock.Unlock()
// 查看当前开启了多少协程
if threads == 0 {
threads = runtime.NumCPU()
}
if threads < 0 {
threads = 0 // Allows disabling local mining without extra logic around local/remote
}
var pend sync.WaitGroup
// 根据协程数,去挖矿,每个协程一个随机数作为起点。
for i := 0; i < threads; i++ {
pend.Add(1)
go func(id int, nonce uint64) {
defer pend.Done()
ethash.mine(block, id, nonce, abort, found)
}(i, uint64(ethash.rand.Int63()))
}
// Wait until sealing is terminated or a nonce is found
var result *types.Block
select {
case <-stop:
// Outside abort, stop all miner threads
close(abort)
case result = <-found:
// One of the threads found a block, abort all others
close(abort)
case <-ethash.update:
// Thread count was changed on user request, restart
close(abort)
pend.Wait()
return ethash.Seal(chain, block, stop)
}
// Wait for all miners to terminate and return the block
pend.Wait()
return result, nil
}
// mine is the actual proof-of-work miner that searches for a nonce starting from
// seed that results in correct final block difficulty.
func (ethash *Ethash) mine(block *types.Block, id int, seed uint64, abort chan struct{}, found chan *types.Block) {
// Extract some data from the header
// 块的属性
var (
header = block.Header()
hash = header.HashNoNonce().Bytes()
target = new(big.Int).Div(maxUint256, header.Difficulty)
number = header.Number.Uint64()
dataset = ethash.dataset(number)
)
// Start generating random nonces until we abort or find a good one
var (
attempts = int64(0)
nonce = seed
)
logger := log.New("miner", id)
logger.Trace("Started ethash search for new nonces", "seed", seed)
search:
for {
select {
case <-abort:
// Mining terminated, update stats and abort
logger.Trace("Ethash nonce search aborted", "attempts", nonce-seed)
ethash.hashrate.Mark(attempts)
break search
default:
// We don't have to update hash rate on every nonce, so update after after 2^X nonces
// 这里在计数,计算hashrate。
attempts++
if (attempts % (1 << 15)) == 0 {
ethash.hashrate.Mark(attempts)
attempts = 0
}
// Compute the PoW value of this nonce
// 去计算结果
digest, result := hashimotoFull(dataset.dataset, hash, nonce)
if new(big.Int).SetBytes(result).Cmp(target) <= 0 {
// Correct nonce found, create a new header with it
// 满足要求,把算出的nonce与mixDigest赋值给区块头
header = types.CopyHeader(header)
header.Nonce = types.EncodeNonce(nonce)
header.MixDigest = common.BytesToHash(digest)
// Seal and return a block (if still needed)
select {
case found <- block.WithSeal(header):
logger.Trace("Ethash nonce found and reported", "attempts", nonce-seed, "nonce", nonce)
case <-abort:
logger.Trace("Ethash nonce found but discarded", "attempts", nonce-seed, "nonce", nonce)
}
break search
}
nonce++
}
}
// Datasets are unmapped in a finalizer. Ensure that the dataset stays live
// during sealing so it's not unmapped while being read.
runtime.KeepAlive(dataset)
}