OpenCV人脸识别

OpenCV人脸识别

目标方案

在树莓派上,PiCamera获得视频流,OpenCV识别, 然后用mjpg-streamer内发布http的视频流服务。

本篇文章主要记录OpenCV人脸识别实现的细节。

OpenCV的人脸识别基础

人脸识别的技术门槛应该很低了,而且是AI技术中成熟度比较高的应用之一。现在很多好用的API,这里用到OpenCV的开源实现。

import cv2

face_patterns = cv2.CascadeClassifier('/usr/local/opt/opencv3/share/OpenCV/haarcascades/haarcascade_frontalface_default.xml')
sample_image = cv2.imread('/Users/abel/201612.jpg')
faces = face_patterns.detectMultiScale(sample_image,scaleFactor=1.1,minNeighbors=5,minSize=(100, 100))
for (x, y, w, h) in faces:
    cv2.rectangle(sample_image, (x, y), (x+w, y+h), (0, 255, 0), 2)
cv2.imwrite('/Users/abel/201612_detected.png', sample_image);

上述代码就是使用OpenCV识别一副图片中的多个人脸。代码来源于这个blog, 参数是个比较重要的东西,要知道每个参数对应的效果。

视频流中的OpenCV人脸识别

这里是使用OpenCV的cascade识别人脸和眼睛,并用颜色框标识出来。OpenCV会自动调用电脑的摄像头,因此确保摄像头可用。

import numpy as np
import cv2

face_cascade = cv2.CascadeClassifier('D:\\bms\\workspace\\PythonProjects\\OpenCVDemo\\haarcascade_frontalface_default.xml')
eye_cascade  = cv2.CascadeClassifier('D:\\bms\\workspace\\PythonProjects\\OpenCVDemo\\haarcascade_eye.xml')
cap = cv2.VideoCapture(0)

while(True):
    ret, img = cap.read()
    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    faces = face_cascade.detectMultiScale(gray, 1.3, 5)
    for (x, y, w, h) in faces:
        cv2.rectangle(img, (x,y), (x+w, y+h), (255, 0, 0), 2)
        roi_gray = gray[y:y+h, x:x+w]
        roi_color = img[y:y+h, x:x+w]

        eyes = eye_cascade.detectMultiScale(roi_gray)
        for (ex, ey, ew, eh) in eyes:
            cv2.rectangle(roi_color, (ex, ey), (ex+ew, ey+eh), (0, 255, 0), 2)

    cv2.imshow('frame', img)
    if cv2.waitKey(30) & 0xFF == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

这里说一下,haar_cascade_xxx.xml是个Haar分类器进行识别的参数。可以从OpenCV的源码里找到基本的(人脸 眼睛之类)分类器参数。使用的时候需要下载到本地。

Haar分类器的原理之后再详细研究总结一下。

好了,现在将一开始的图片中检测人脸的代码优化一下,加入额外功能:

#!/usr/bin/python
'''
used for detect face on one image
Usage: python detect_face.py -i <inputfile> -o <outputfile>
'''
import cv2 as cv
import os, sys, getopt


def detect_face(infile, outfile):
    if not os.path.exists(infile):
        print("Please give input file!")
        return

    if not os.path.exists('haarcascade_frontalface_default.xml'):
        print("Please put haarcascade_frontalface_default.xml in current dir")
        return 
    
    infile_path = os.path.abspath(infile)
    image = cv.imread(infile_path, 1)
    gray = cv.imread(infile_path, 0)
    haarcascade_frontalface_path = os.path.abspath('haarcascade_frontalface_default.xml')
    face_cascade = cv.CascadeClassifier(haarcascade_frontalface_path)
    faces = face_cascade.detectMultiScale(gray, 1.1, 5)

    for (x, y, w, h) in faces:
        cv.rectangle(image, (x, y), (x+w, y+h), (255, 0, 0), 2)
    cv.imwrite(outfile, image)


def main(argv):
    infile = 'input.jpg'
    outfile = 'output.jpg'
    try:
        opts, args = getopt.getopt(argv, "hi:o:")
    except getopt.GetoptError:
        print("detect_face.py -i <inputfile> -o <outputfile>")
        sys.exit(2)

    for opt, arg in opts:
        if opt == '-h':
            print("detect_face.py -i <inputfile> -o <outputfile>")
            sys.exit()
        elif opt == '-i':
            infile = arg
        elif opt == '-o':
            outfile = arg

    detect_face(infile, outfile)

if __name__ == "__main__":
    main(sys.argv[1:])

这样就可以使用shell调用人脸识别的功能了。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容